Automated deep learning-based quantification of baseline imaging PET metrics on FDG PET/CT images of pediatric lymphoma patients

被引:0
|
作者
Weisman, Amy [1 ]
Kim, Jihyun [2 ]
Lee, Inki [3 ]
McCarten, Kathleen [4 ]
Kessel, Sandy [4 ]
Schwartz, Cindy [5 ]
Kelly, Kara [6 ]
Jeraj, Robert [7 ]
Cho, Steve [3 ]
Bradshaw, Tyler [7 ]
机构
[1] Univ Wisconsin, Med Phys, Madison, WI USA
[2] Univ Wisconsin, Dept Radiol, Sch Med & Pub, Madison, WI 53706 USA
[3] Univ Wisconsin, Radiol, Madison, WI USA
[4] IROCRI, Lincoln, RI USA
[5] UT MD Anderson Canc Ctr, Houston, TX USA
[6] RPCI, Buffalo, NY USA
[7] Univ Wisconsin, Madison, WI USA
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
506
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Automated quantification of baseline imaging PET metrics on FDG PET/CT images of pediatric Hodgkin lymphoma patients
    Weisman, Amy J.
    Kim, Jihyun
    Lee, Inki
    McCarten, Kathleen M.
    Kessel, Sandy
    Schwartz, Cindy L.
    Kelly, Kara M.
    Jeraj, Robert
    Cho, Steve Y.
    Bradshaw, Tyler J.
    [J]. EJNMMI PHYSICS, 2020, 7 (01)
  • [2] Automated quantification of baseline imaging PET metrics on FDG PET/CT images of pediatric Hodgkin lymphoma patients
    Amy J. Weisman
    Jihyun Kim
    Inki Lee
    Kathleen M. McCarten
    Sandy Kessel
    Cindy L. Schwartz
    Kara M. Kelly
    Robert Jeraj
    Steve Y. Cho
    Tyler J. Bradshaw
    [J]. EJNMMI Physics, 7
  • [3] FDG PET and PET/CT in the Management of Pediatric Lymphoma Patients
    Cheng, Gang
    Servaes, Sabah
    Alavi, Abass
    Zhuang, Hongming
    [J]. PET CLINICS, 2008, 3 (04) : 621 - +
  • [4] Machine learning-based assignment of Deauville scores is comparable to interobserver variability on interim FDG PET/CT images of pediatric lymphoma patients
    Weisman, Amy
    Lee, Inki
    Im, HyungJun
    McCarten, Kathleen
    Kessel, Sandy
    Schwartz, Cindy
    Kelly, Kara
    Santoro-Fernandes, Victor
    Jeraj, Robert
    Cho, Steve
    Bradshaw, Tyler
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2020, 61
  • [5] Feasibility of fully automated deep learning-based segmentation of lymphoma lesions in whole-body [18F]FDG PET/CT images
    Ribeiro, A.
    Leite, P.
    Constantino, C. S.
    Leocadio, S.
    Oliveira, F.
    Silva, M.
    Oliveira, C.
    Castanheira, J. C.
    Silva, A.
    Vaz, S.
    Teixeira, R.
    Neves, M.
    Lucio, P.
    Joao, C.
    Ferreira, M. J.
    Costa, D. C.
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (SUPPL 1) : S416 - S416
  • [6] Automated Quantification of Lymphoma On FDG PET/CT Images Using Cascaded Convolutional Neural Networks
    Weisman, A.
    Kieler, M.
    Perlman, S.
    Jeraj, R.
    Hutchings, M.
    Kostakoglu, L.
    Bradshaw, T.
    [J]. MEDICAL PHYSICS, 2019, 46 (06) : E466 - E466
  • [7] FDG PET and PET/CT imaging in lymphoma and melanoma
    Macapinlac, HA
    [J]. CANCER JOURNAL, 2004, 10 (04): : 262 - 270
  • [8] Deep learning-based metal artefact reduction in PET/CT imaging
    Arabi, Hossein
    Zaidi, Habib
    [J]. EUROPEAN RADIOLOGY, 2021, 31 (08) : 6384 - 6396
  • [9] An Automated Deep Learning-Based Framework for Uptake Segmentation and Classification on PSMA PET/CT Imaging of Patients with Prostate Cancer
    Li, Yang
    Imami, Maliha R.
    Zhao, Linmei
    Amindarolzarbi, Alireza
    Mena, Esther
    Leal, Jeffrey
    Chen, Junyu
    Gafita, Andrei
    Voter, Andrew F.
    Li, Xin
    Du, Yong
    Zhu, Chengzhang
    Choyke, Peter L.
    Zou, Beiji
    Jiao, Zhicheng
    Rowe, Steven P.
    Pomper, Martin G.
    Bai, Harrison X.
    [J]. JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024,
  • [10] Deep learning-based automated segmentation of eight brain anatomical regions using head CT images in PET/CT
    Tong Wang
    Haiqun Xing
    Yige Li
    Sicong Wang
    Ling Liu
    Fang Li
    Hongli Jing
    [J]. BMC Medical Imaging, 22