Effect of Manganese Contamination on the Solid-Electrolyte-Interphase Properties in Li-Ion Batteries

被引:131
|
作者
Delacourt, C. [1 ,2 ]
Kwong, A. [1 ,3 ]
Liu, X. [4 ]
Qiao, R. [4 ]
Yang, W. L. [4 ]
Lu, P. [5 ]
Harris, S. J. [6 ]
Srinivasan, V. [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA
[2] Univ Picardie Jules Verne, CNRS UMR 7314, Lab React & Chim Solides, Amiens, France
[3] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[5] Gen Motors R&D Ctr, Warren, MI 48090 USA
[6] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
关键词
EDGE PLANE GRAPHITE; RECHARGEABLE BATTERIES; SPINEL CELLS; LITHIUM; LIMN2O4; PERFORMANCE; INSERTION; SURFACE; MECHANISMS; DEPOSITION;
D O I
10.1149/2.035308jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Comprehensive experiments are carried out in order to gain insight into the effect of manganese contamination of the solid electrolyte interphase at the anode in Li-ion batteries. Electrochemistry shows that surface films contaminated with Mn are not passive toward electrolyte decomposition and are electroactive. Soft X-ray spectroscopy shows that the Mn is at +2 oxidation state in the film, just like Mn ions in the electrolyte. We believe Mn2+ from the electrolyte reduces to Mn-0 at the electrode surface and Mn-0 further reoxidizes by reacting with solvent molecules. Although not detected in soft X-ray spectra, it is possible that Mn-0 is present in an amount high enough to allow for an electron leakage through the film, thereby suppressing passivation. Mn trapped in the film reversibly reacts with lithium according to a conversion reaction. It is a multiphase transformation yielding severe structural changes, hence the film undergoes severe morphological changes during cycling, thereby favoring electrolyte decomposition and further film growth. In this regard, Mn contamination of the SEI therefore promotes a larger cyclable lithium loss at the anode as compared to a Mn-free SEI, and thereby a persistent capacity loss of graphite/LMO cells. (C) 2013 The Electrochemical Society. All rights reserved.
引用
收藏
页码:A1099 / A1107
页数:9
相关论文
共 50 条
  • [1] Effect of water on solid electrolyte interphase formation in Li-ion batteries
    Saito, M.
    Fujita, M.
    Aoki, Y.
    Yoshikawa, M.
    Yasuda, K.
    Ishigami, R.
    Nakata, Y.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2016, 371 : 273 - 277
  • [2] Electron transfer through solid-electrolyte-interphase layers formed on Si anodes of Li-ion batteries
    Benitez, L.
    Cristancho, D.
    Seminario, J.M.
    Martinez De La Hoz, J.M.
    Balbuena, P.B.
    Electrochimica Acta, 2014, 140 : 250 - 257
  • [3] Electron transfer through solid-electrolyte-interphase layers formed on Si anodes of Li-ion batteries
    Benitez, L.
    Cristancho, D.
    Seminario, J.M.
    Martinez De La Hoz, J.M.
    Balbuena, P.B.
    Electrochimica Acta, 2014, 140 : 250 - 257
  • [4] Optimal Condition of Solid-Electrolyte-Interphase Prepared by Controlled Prelithiation for High Performance Li-Ion Batteries
    Lee, Dae In
    Yang, Hyeon-Woo
    Kang, Woo Seung
    Kim, Jongsoon
    Kim, Sun-Jae
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (04) : A787 - A792
  • [5] Electron transfer through solid-electrolyte-interphase layers formed on Si anodes of Li-ion batteries
    Benitez, L.
    Cristancho, D.
    Seminario, J. M.
    de la Hoz, J. M. Martinez
    Balbuena, P. B.
    ELECTROCHIMICA ACTA, 2014, 140 : 250 - 257
  • [6] Identifying the components of the solid–electrolyte interphase in Li-ion batteries
    Luning Wang
    Anjali Menakath
    Fudong Han
    Yi Wang
    Peter Y. Zavalij
    Karen J. Gaskell
    Oleg Borodin
    Dinu Iuga
    Steven P. Brown
    Chunsheng Wang
    Kang Xu
    Bryan W. Eichhorn
    Nature Chemistry, 2019, 11 : 789 - 796
  • [7] Stabilization effect of solid-electrolyte interphase by electrolyte engineering for advanced Li-ion batteries
    Bintang, His Muhammad
    Seongsoo, Lee
    Shin, Sunghee
    Kim, Byung Gon
    Jung, Hun-Gi
    Whang, Dongmok
    Lim, Hee-Dae
    CHEMICAL ENGINEERING JOURNAL, 2021, 424
  • [8] Stabilization effect of solid-electrolyte interphase by electrolyte engineering for advanced Li-ion batteries
    Bintang, His Muhammad
    Lee, Seongsoo
    Shin, Sunghee
    Kim, Byung Gon
    Jung, Hun-Gi
    Whang, Dongmok
    Lim, Hee-Dae
    Chemical Engineering Journal, 2021, 424
  • [9] Identifying the components of the solid-electrolyte interphase in Li-ion batteries
    Wang, Luning
    Menakath, Anjali
    Han, Fudong
    Wang, Yi
    Zavalij, Peter Y.
    Gaskell, Karen J.
    Borodino, Oleg
    Iuga, Dinu
    Brown, Steven P.
    Wang, Chunsheng
    Xu, Kang
    Eichhorn, Bryan W.
    NATURE CHEMISTRY, 2019, 11 (09) : 789 - 796
  • [10] A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
    Verma, Pallavi
    Maire, Pascal
    Novak, Petr
    ELECTROCHIMICA ACTA, 2010, 55 (22) : 6332 - 6341