Global classical solutions of viscous liquidgas two-phase flow model

被引:5
|
作者
Cui, Haibo [1 ]
Wen, Huanyao [1 ]
Yin, Haiyan [1 ]
机构
[1] Cent China Normal Univ, Dept Math, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
viscous liquidgas two-phase flow model; classical solutions; global existence; NAVIER-STOKES EQUATIONS; BLOW-UP CRITERION; WEAK SOLUTIONS; COMPRESSIBLE FLOW; GAS MODEL; EXISTENCE; BEHAVIOR; VACUUM;
D O I
10.1002/mma.2614
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the global existence and uniqueness of the classical solutions for the three-dimensional where the existence of global classical solutions to the compressible NavierStokes equations was obtained by using the continuity methods under the assumption that the initial energy is sufficiently small. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:567 / 583
页数:17
相关论文
共 50 条
  • [1] Global existence of weak solutions for a viscous two-phase model
    Evje, Steinar
    Karlsen, Kenneth H.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (09) : 2660 - 2703
  • [2] Global classical solutions to the viscous two-phase flow model with slip boundary conditions in 3D exterior domains
    Li, Zilai
    Liu, Hao
    Wang, Huaqiao
    Zhou, Daoguo
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [3] Global classical solutions to the viscous two-phase flow model with slip boundary conditions in 3D exterior domains
    Zilai Li
    Hao Liu
    Huaqiao Wang
    Daoguo Zhou
    Boundary Value Problems, 2023
  • [4] GLOBAL ANALYSIS OF STRONG SOLUTIONS FOR THE VISCOUS LIQUID-GAS TWO-PHASE FLOW MODEL IN A BOUNDED DOMAIN
    Wu, Guochun
    Zhang, Yinghui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (04): : 1411 - 1429
  • [5] Global strong solutions to the 3D viscous liquid-gas two-phase flow model
    Yu, Haibo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 272 : 732 - 759
  • [6] GLOBAL SOLUTIONS OF A DIFFUSE INTERFACE MODEL FOR THE TWO-PHASE FLOW OF COMPRESSIBLE VISCOUS FLUIDS IN 1D
    Ding, Shijin
    Li, Yinghua
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (04) : 1055 - 1086
  • [7] Existence of weak solutions for a non-classical sharp interface model for a two-phase flow of viscous, incompressible fluids
    Abels, Helmut
    Roeger, Matthias
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (06): : 2403 - 2424
  • [8] Global Classical Solutions to the Viscous Two-Phase Flow Model with Navier-type Slip Boundary Condition in 2D Bounded Domains
    Li, Zilai
    Liu, Hao
    Ye, Yulin
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (03)
  • [9] Global Classical Solutions to the Viscous Two-Phase Flow Model with Navier-type Slip Boundary Condition in 2D Bounded Domains
    Zilai Li
    Hao Liu
    Yulin Ye
    Journal of Mathematical Fluid Mechanics, 2022, 24
  • [10] Global weak solutions for a model of two-phase flow with a single interface
    Debora Amadori
    Paolo Baiti
    Andrea Corli
    Edda Dal Santo
    Journal of Evolution Equations, 2015, 15 : 699 - 726