Enhanced electrocatalytic performance of Pt-based nanoparticles on reduced graphene oxide for methanol oxidation

被引:42
|
作者
Ji, Zhenyuan [1 ]
Shen, Xiaoping [1 ,2 ]
Zhu, Guoxing [1 ]
Chen, Kangmin [3 ]
Fu, Guohua [1 ]
Tong, Lei [1 ]
机构
[1] Jiangsu Univ, Sch Chem & Chem Engn, Zhenjiang 212013, Peoples R China
[2] Nanjing Univ, State Key Lab Coordinat Chem, Nanjing 210093, Jiangsu, Peoples R China
[3] Jiangsu Univ, Sch Mat Sci & Engn, Zhenjiang 212013, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene; Pt-based catalyst; Nanocomposites; Synthesis; Methanol oxidation; MULTIWALLED CARBON NANOTUBES; FUEL-CELLS; FACILE SYNTHESIS; CATALYTIC PERFORMANCE; CHEMICAL-REDUCTION; OXYGEN REDUCTION; FORMIC-ACID; ELECTROOXIDATION; NANOCOMPOSITES; CO;
D O I
10.1016/j.jelechem.2012.07.020
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Pt-based materials have been widely used as electrocatalysts in direct methanol fuel cells (DMFCs) due to their significant activity for methanol oxidation and the superior poison tolerance. In this study, several Pt-based catalysts (PtSn. PtW, and PtMo) supported on reduced graphene oxide (RGO) are successfully synthesized in an ethylene glycol (EG)-water system for the first time. The microstructure and morphology of the synthesized materials are investigated by X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. It is shown that highly dispersed PtM (M = Sn, W, and Mo) nanoparticles with a size of 2-3 nm are homogeneously deposited on the surface of RGO sheets. Their electrocatalytic performances in methanol oxidation are investigated by cyclic voltammetry and amperometric method. The RGO/PtM catalysts exhibit much higher catalytic activity and stability than the RGO/Pt nanocomposites. Among these RGO/PtM catalysts, RGO/PtSn nanocomposites show the best catalytic performance. It is proposed that the addition of a second element, which creates much more Pt active sites for methanol oxidation, is responsible for the improved catalytic performance. These results imply that the prepared RGO/PtM nanocomposites could be promising electrocatalysts for high-performance DMFCs applications. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 100
页数:6
相关论文
共 50 条
  • [1] Recent progress on reduced graphene oxide supported Pt-based catalysts and electrocatalytic oxidation performance of methanol
    Yu, Yunqi
    Chen, Kangcheng
    Wu, Qin
    Zhang, Yaoyuan
    Shi, Daxin
    Li, Hansheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (05) : 1785 - 1812
  • [2] Preparation of Pt-Based Bimetallic Catalysts and Electrocatalytic Performance for Methanol Oxidation
    Li, HongWei
    Xu, HanQiao
    Qi, JianJun
    Da, Hu
    Ji, Dong
    Zhao, XinHong
    Li, GuiXian
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (36): : 14989 - 14999
  • [3] Silver nanoparticles anchored reduced graphene oxide for enhanced electrocatalytic activity towards methanol oxidation
    Kumar, Sanjeev
    Mahajan, Mani
    Singh, Rajinder
    Mahajan, Aman
    CHEMICAL PHYSICS LETTERS, 2018, 693 : 23 - 27
  • [4] Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation
    Li, Yongjie
    Gao, Wei
    Ci, Lijie
    Wang, Chunming
    Ajayan, Pulickel M.
    CARBON, 2010, 48 (04) : 1124 - 1130
  • [5] Synthesis and Electrocatalytic Properties of Pt Nanoparticles on Nitrogen-Doped Reduced Graphene Oxide for Methanol Oxidation
    Wang Li
    Ma Jun-Hong
    ACTA PHYSICO-CHIMICA SINICA, 2014, 30 (07) : 1267 - 1273
  • [6] Reduced graphene oxide supported FePt alloy nanoparticles with high electrocatalytic performance for methanol oxidation
    Ji, Zhenyuan
    Zhu, Guoxing
    Shen, Xiaoping
    Zhou, Hu
    Wu, Chaomin
    Wang, Min
    NEW JOURNAL OF CHEMISTRY, 2012, 36 (09) : 1774 - 1780
  • [7] PdCu alloy nanoparticles supported on reduced graphene oxide for electrocatalytic oxidation of methanol
    Ye, Huangqing
    Li, Yunming
    Chen, Jiahui
    Sheng, Jiali
    Fu, Xian-Zhu
    Sun, Rong
    Wong, Ching-Ping
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (23) : 15871 - 15881
  • [8] PdCu alloy nanoparticles supported on reduced graphene oxide for electrocatalytic oxidation of methanol
    Huangqing Ye
    Yunming Li
    Jiahui Chen
    Jiali Sheng
    Xian-Zhu Fu
    Rong Sun
    Ching-Ping Wong
    Journal of Materials Science, 2018, 53 : 15871 - 15881
  • [9] Deposition of cobalt nanoparticles on reduced graphene oxide and the electrocatalytic activity for methanol and ethanol oxidation
    Subramani, Shivakumar Mandikarappa
    Gantigiah, Krishnamurthy
    MATERIALS RESEARCH EXPRESS, 2019, 6 (12)
  • [10] Enhanced electrocatalytic performance of cobalt oxide nanocubes incorporating reduced graphene oxide as a modified platinum electrode for methanol oxidation
    Shahid, Muhammad Mehmood
    Pandikumar, Alagarsamy
    Golsheikh, Amir Moradi
    Huang, Nay Ming
    Lim, Hong Ngee
    RSC ADVANCES, 2014, 4 (107) : 62793 - 62801