Uncertainty quantification in density estimation from background-oriented Schlieren measurements

被引:23
|
作者
Rajendran, Lalit K. [1 ]
Zhang, Jiacheng [2 ]
Bhattacharya, Sayantan [2 ]
Bane, Sally P. M. [1 ]
Vlachos, Pavlos P. [2 ]
机构
[1] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
uncertainty; BOS; background oriented schlieren; density estimation; PARTICLE IMAGE VELOCIMETRY; ACCURACY; VISUALIZATION; TOMOGRAPHY; ABEL;
D O I
10.1088/1361-6501/ab60c8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present an uncertainty quantification methodology for density estimation from background-oriented Schlieren (BOS) measurements, in order to provide local, instantaneous, a posteriori uncertainty bounds on each density measurement in the field of view. Displacement uncertainty quantification algorithms from cross-correlation-based particle image velocimetry are used to estimate the uncertainty in the dot pattern displacements obtained from cross-correlation for BOSs and assess their feasibility. In order to propagate the displacement uncertainty through the density integration procedure, we also develop a novel methodology via the Poisson solver using sparse linear operators. Testing the method using synthetic images of a Gaussian density field showed agreement between the propagated density uncertainties and the true uncertainty. Subsequently, the methodology is experimentally demonstrated for supersonic flow over a wedge, showing that regions with sharp changes in density lead to an increase in density uncertainty throughout the field of view, even in regions without these sharp changes. The uncertainty propagation is influenced by the density integration scheme, and for the Poisson solver the density uncertainty on average increases on moving away from the regions where the Dirichlet boundary conditions are specified.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Monte Carlo-based a posteriori uncertainty quantification for background-oriented schlieren measurements
    Abdelhafidh Moumen
    Véronique de Briey
    Oussama Atoui
    Delphine Laboureur
    Johan Gallant
    Patrick Hendrick
    [J]. Journal of Visualization, 2022, 25 : 945 - 965
  • [2] Monte Carlo-based a posteriori uncertainty quantification for background-oriented schlieren measurements
    Moumen, Abdelhafidh
    de Briey, Veronique
    Atoui, Oussama
    Laboureur, Delphine
    Gallant, Johan
    Hendrick, Patrick
    [J]. JOURNAL OF VISUALIZATION, 2022, 25 (05) : 945 - 965
  • [3] Quantifying numerical uncertainty in background-oriented schlieren
    Pranjal Anand
    Jiacheng Zhang
    Lalit K. Rajendran
    Sally P. M. Bane
    Pavlos P. Vlachos
    [J]. Experiments in Fluids, 2024, 65
  • [4] Quantifying numerical uncertainty in background-oriented schlieren
    Anand, Pranjal
    Zhang, Jiacheng
    Rajendran, Lalit K.
    Bane, Sally P. M.
    Vlachos, Pavlos P.
    [J]. EXPERIMENTS IN FLUIDS, 2024, 65 (01)
  • [5] Density measurements in an axisymmetric underexpanded jet by background-oriented schlieren technique
    Venkatakrishnan, L
    [J]. AIAA JOURNAL, 2005, 43 (07) : 1574 - 1579
  • [7] Density measurements using near-field background-oriented Schlieren
    van Hinsberg, N. P.
    Roesgen, T.
    [J]. EXPERIMENTS IN FLUIDS, 2014, 55 (04) : 1 - 11
  • [8] Density measurements using near-field background-oriented Schlieren
    N. P. van Hinsberg
    T. Rösgen
    [J]. Experiments in Fluids, 2014, 55
  • [9] Density measurements for rectangular free jets using background-oriented schlieren
    Tipnis, T. J.
    Finnis, M. V.
    Knowles, K.
    Bray, D.
    [J]. AERONAUTICAL JOURNAL, 2013, 117 (1194): : 771 - 785
  • [10] Projection background-oriented schlieren
    Weisberger, Joshua M.
    Bathel, Brett F.
    [J]. APPLIED OPTICS, 2022, 61 (20) : 6006 - 6015