Generating multivariate load states using a conditional variational autoencoder

被引:8
|
作者
Wang, Chenguang [1 ]
Sharifnia, Ensieh [1 ]
Gao, Zhi [1 ]
Tindemans, Simon H. [1 ]
Palensky, Peter [1 ]
机构
[1] Delft Univ Technol, Dept Elect Sustainable Energy, Delft, Netherlands
关键词
CVAE; Generative model; Load modelling; Multivariate dependence; System adequacy; ENERGY; MANAGEMENT;
D O I
10.1016/j.epsr.2022.108603
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For planning of power systems and for the calibration of operational tools, it is essential to analyse system performance in a large range of representative scenarios. When the available historical data is limited, generative models are a promising solution, but modelling high-dimensional dependencies is challenging. In this paper, a multivariate load state generating model on the basis of a conditional variational autoencoder (CVAE) neural network is proposed. Going beyond common CVAE implementations, the model includes stochastic variation of output samples under given latent vectors and co-optimizes the parameters for this output variability. It is shown that this improves statistical properties of the generated data. The quality of generated multivariate loads is evaluated using univariate and multivariate performance metrics. A generation adequacy case study on the European network is used to illustrate model's ability to generate realistic tail distributions. The experiments demonstrate that the proposed generator outperforms other data generating mechanisms.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Probabilistic Individual Short-Term Load Forecasting Using Conditional Variational Autoencoder
    Khazeiynasab, Seyyed Rashid
    Iyengar, Rajagopal
    Leow, Woei Ling
    [J]. 2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM, 2023,
  • [3] Generating Classical Chinese Poems via Conditional Variational Autoencoder and Adversarial Training
    Li, Juntao
    Song, Yan
    Zhang, Haisong
    Chen, Dongmin
    Shi, Shuming
    Zhao, Dongyan
    Yan, Rui
    [J]. 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 3890 - 3900
  • [4] Improving Fault Localization Using Conditional Variational Autoencoder
    Fang, Xianmei
    Gao, Xiaobo
    Wang, Yuting
    Liao, Zhouyu
    Ma, Yue
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (08) : 1490 - 1494
  • [5] Emotional Response Generation using Conditional Variational Autoencoder
    Lee, Young-Jun
    Choi, Ho-Jin
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 553 - 554
  • [6] Distributional Drift Adaptation With Temporal Conditional Variational Autoencoder for Multivariate Time Series Forecasting
    He, Hui
    Zhang, Qi
    Yi, Kun
    Shi, Kaize
    Niu, Zhendong
    Cao, Longbing
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 15
  • [7] Degradation Prediction of Semiconductor Lasers Using Conditional Variational Autoencoder
    Abdelli, Khouloud
    Griesser, Helmut
    Neumeyr, Christian
    Hohenleitner, Robert
    Pachnicke, Stephan
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (18) : 6213 - 6221
  • [8] Trajectory Prediction with a Conditional Variational Autoencoder
    Barbie, Thibault
    Nishio, Takaki
    Nishida, Takeshi
    [J]. JOURNAL OF ROBOTICS AND MECHATRONICS, 2019, 31 (03) : 493 - 499
  • [9] Power Plant Model Parameter Calibration Using Conditional Variational Autoencoder
    Khazeiynasab, Seyyed Rashid
    Zhao, Junbo
    Batarseh, Issa
    Tan, Bendong
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (02) : 1642 - 1652
  • [10] Rapid Generation of Kilonova Light Curves Using Conditional Variational Autoencoder
    Saha, Surojit
    Williams, Michael J.
    Datrier, Laurence
    Hayes, Fergus
    Nicholl, Matt
    Kong, Albert K. H.
    Hendry, Martin
    Heng, I. K. Siong
    Lamb, Gavin P.
    Lin, En-Tzu
    Williams, Daniel
    [J]. ASTROPHYSICAL JOURNAL, 2024, 961 (02):