The convergence speed of interval methods for global optimization

被引:8
|
作者
Csallner, AE
Csendes, T
机构
[1] József Attila University, Institute of Informatics, Szeged
关键词
global optimization; interval arithmetic; subdivision;
D O I
10.1016/0898-1221(95)00229-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Three particular algorithms from a class of interval subdivision methods for global optimization are studied. The theoretical upper bound on the convergence speed of Hansen's method is given. The three methods (by Hansen, Moore-Skelboe, and a new one with a random actual box selection rule) are compared numerically.
引用
收藏
页码:173 / 178
页数:6
相关论文
共 50 条
  • [1] Convergence speed of interval methods for global optimization
    Csallner, A.E.
    Csendes, T.
    Computers & Mathematics with Applications, 1996, 31 (4-5):
  • [2] Interval methods for global optimization
    Wolfe, MA
    APPLIED MATHEMATICS AND COMPUTATION, 1996, 75 (2-3) : 179 - 206
  • [3] ON THE CONVERGENCE OF GLOBAL METHODS IN MULTIEXTREMAL OPTIMIZATION
    HORST, R
    TUY, H
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1987, 54 (02) : 253 - 271
  • [4] New interval methods for constrained global optimization
    Markót, MC
    Fernández, J
    Casado, LG
    Csendes, T
    MATHEMATICAL PROGRAMMING, 2006, 106 (02) : 287 - 318
  • [5] Global interval methods for local nonsmooth optimization
    Görges, C
    Ratschek, H
    JOURNAL OF GLOBAL OPTIMIZATION, 1999, 14 (02) : 157 - 179
  • [6] New interval methods for constrained global optimization
    M.Cs. Markót
    J. Fernández
    L.G. Casado
    T. Csendes
    Mathematical Programming, 2006, 106 : 287 - 318
  • [7] Global Interval Methods for Local Nonsmooth Optimization
    Christiane Görges
    Helmut Ratschek
    Journal of Global Optimization, 1999, 14 : 157 - 179
  • [8] On the Global Convergence of Particle Swarm Optimization Methods
    Huang, Hui
    Qiu, Jinniao
    Riedl, Konstantin
    APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 88 (02):
  • [9] On the Global Convergence of Particle Swarm Optimization Methods
    Hui Huang
    Jinniao Qiu
    Konstantin Riedl
    Applied Mathematics & Optimization, 2023, 88
  • [10] Subdivision direction selection in interval methods for global optimization
    Csendes, T
    Ratz, D
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (03) : 922 - 938