A COMPARATIVE STUDY ON MULTIPLE KERNEL LEARNING FOR REMOTE SENSING IMAGE CLASSIFICATION

被引:6
|
作者
Niazmardi, Saeid [1 ]
Demir, Beguem [2 ]
Bruzzone, Lorenzo [2 ]
Safari, Abdolreza [1 ]
Homayouni, Saeid [3 ]
机构
[1] Univ Tehran, Coll Engn, Sch Surveying & Geospatial Engn, Tehran 14174, Iran
[2] Univ Trento, Dept Comp Sci & Informat Engn, Trento, Italy
[3] Univ Ottawa, Dept Geog Environm Studies & Geomat, Ottawa, ON K1N 6N5, Canada
关键词
multiple kernel learning; remote sensing; image classification;
D O I
10.1109/IGARSS.2016.7729386
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper analyzes and compares different Multiple Kernel Learning (MKL) algorithms for the classification of remote sensing (RS) images. The main purpose of the comparison is to identify advantages and disadvantages of different MKL algorithms in terms of their computational time and classification accuracy. Furthermore, some guidelines on the proper selection of the MKL algorithms associated with different RS image classification problems are derived.
引用
收藏
页码:1512 / 1515
页数:4
相关论文
共 50 条
  • [1] Multiple Kernel Learning for Remote Sensing Image Classification
    Niazmardi, Saeid
    Demir, Begum
    Bruzzone, Lorenzo
    Safari, Abdolreza
    Homayouni, Saeid
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (03): : 1425 - 1443
  • [2] Remote Sensing Image Classification Exploiting Multiple Kernel Learning
    Cusano, Claudio
    Napoletano, Paolo
    Schettini, Raimondo
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (11) : 2331 - 2335
  • [3] SVM or deep learning? A comparative study on remote sensing image classification
    Liu, Peng
    Choo, Kim-Kwang Raymond
    Wang, Lizhe
    Huang, Fang
    [J]. SOFT COMPUTING, 2017, 21 (23) : 7053 - 7065
  • [4] SVM or deep learning? A comparative study on remote sensing image classification
    Peng Liu
    Kim-Kwang Raymond Choo
    Lizhe Wang
    Fang Huang
    [J]. Soft Computing, 2017, 21 : 7053 - 7065
  • [5] A NOVEL MULTIPLE KERNEL LEARNING FRAMEWORK FOR REMOTE SENSING SCENE CLASSIFICATION
    Bian, Xiaoyong
    Sheng, Yuxia
    Xu, Yan
    Du, Qian
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4717 - 4720
  • [6] Ensemble Multiple Kernel Active Learning For Classification of Multisource Remote Sensing Data
    Zhang, Yuhang
    Yang, Hsiuhan Lexie
    Prasad, Saurabh
    Pasolli, Edoardo
    Jung, Jinha
    Crawford, Melba
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (02) : 845 - 858
  • [7] Remote Sensing Image Scene Classification by Multiple Granularity Semantic Learning
    Guo, Weilong
    Li, Shengyang
    Yang, Jian
    Zhou, Zhuang
    Liu, Yunfei
    Lu, Junjie
    Kou, Longxuan
    Zhao, Manqi
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 2546 - 2562
  • [8] Kernel-based extreme learning machine for remote-sensing image classification
    Pal, Mahesh
    Maxwell, Aaron E.
    Warner, Timothy A.
    [J]. REMOTE SENSING LETTERS, 2013, 4 (09) : 853 - 862
  • [9] A Comparative Study of Multiple Kernel Learning Approaches for SVM Classification
    Zare, T.
    Sadeghi, M. T.
    Abutalebi, H. R.
    [J]. 2014 7th International Symposium on Telecommunications (IST), 2014, : 84 - 89
  • [10] Kernel-Based Texture in Remote Sensing Image Classification
    Warner, Timothy
    [J]. GEOGRAPHY COMPASS, 2011, 5 (10): : 781 - 798