Cross-Modal Deep Variational Hashing

被引:71
|
作者
Liong, Venice Erin [1 ,3 ]
Lu, Jiwen [2 ]
Tan, Yap-Peng [3 ]
Zhou, Jie [2 ]
机构
[1] Nanyang Technol Univ, Interdisciplinary Grad Sch, Rapid Rich Object Search ROSE Lab, Singapore, Singapore
[2] Tsinghua Univ, Dept Automat, Beijing, Peoples R China
[3] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
基金
中国国家自然科学基金;
关键词
D O I
10.1109/ICCV.2017.439
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a cross-modal deep variational hashing (CMDVH) method for cross-modality multimedia retrieval. Unlike existing cross-modal hashing methods which learn a single pair of projections to map each example as a binary vector, we design a couple of deep neural network to learn non-linear transformations from image-text input pairs, so that unified binary codes can be obtained. We then design the modality-specific neural networks in a probabilistic manner where we model a latent variable as close as possible from the inferred binary codes, which is approximated by a posterior distribution regularized by a known prior. Experimental results on three benchmark datasets show the efficacy of the proposed approach.
引用
收藏
页码:4097 / 4105
页数:9
相关论文
共 50 条
  • [1] Deep Cross-Modal Hashing
    Jiang, Qing-Yuan
    Li, Wu-Jun
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 3270 - 3278
  • [2] Deep Cross-Modal Proxy Hashing
    Tu, Rong-Cheng
    Mao, Xian-Ling
    Tu, Rong-Xin
    Bian, Binbin
    Cai, Chengfei
    Wang, Hongfa
    Wei, Wei
    Huang, Heyan
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (07) : 6798 - 6810
  • [3] Semantic deep cross-modal hashing
    Lin, Qiubin
    Cao, Wenming
    He, Zhihai
    He, Zhiquan
    [J]. NEUROCOMPUTING, 2020, 396 : 113 - 122
  • [4] Asymmetric Deep Cross-modal Hashing
    Gu, Jingzi
    Zhang, JinChao
    Lin, Zheng
    Li, Bo
    Wang, Weiping
    Meng, Dan
    [J]. COMPUTATIONAL SCIENCE - ICCS 2019, PT V, 2019, 11540 : 41 - 54
  • [5] Separated Variational Hashing Networks for Cross-Modal Retrieval
    Hu, Peng
    Wang, Xu
    Zhen, Liangli
    Peng, Dezhong
    [J]. PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 1721 - 1729
  • [6] Unsupervised Deep Fusion Cross-modal Hashing
    Huang, Jiaming
    Min, Chen
    Jing, Liping
    [J]. ICMI'19: PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, 2019, : 358 - 366
  • [7] Deep Binary Reconstruction for Cross-Modal Hashing
    Hu, Di
    Nie, Feiping
    Li, Xuelong
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (04) : 973 - 985
  • [8] Deep medical cross-modal attention hashing
    Zhang, Yong
    Ou, Weihua
    Shi, Yufeng
    Deng, Jiaxin
    You, Xinge
    Wang, Anzhi
    [J]. WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2022, 25 (04): : 1519 - 1536
  • [9] Deep medical cross-modal attention hashing
    Yong Zhang
    Weihua Ou
    Yufeng Shi
    Jiaxin Deng
    Xinge You
    Anzhi Wang
    [J]. World Wide Web, 2022, 25 : 1519 - 1536
  • [10] Cross-modal hashing with semantic deep embedding
    Yan, Cheng
    Bai, Xiao
    Wang, Shuai
    Zhou, Jun
    Hancock, Edwin R.
    [J]. NEUROCOMPUTING, 2019, 337 : 58 - 66