An Inexact Accelerated Proximal Gradient Method and a Dual Newton-CG Method for the Maximal Entropy Problem

被引:7
|
作者
Wang, Chengjing [1 ,2 ]
Xu, Aimin [3 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu 610031, Peoples R China
[2] Southwest Jiaotong Univ, Inst Appl Math, Chengdu 610031, Peoples R China
[3] Zhejiang Wanli Univ, Inst Math, Ningbo 315100, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Maximal entropy problem; Inexact accelerated proximal gradient method; Newton-CG method; Semi-smoothness; IMAGE-RECONSTRUCTION; ALGORITHM; EQUATIONS;
D O I
10.1007/s10957-012-0150-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper describes an algorithm to solve large-scale maximal entropy problems. The algorithm employs an inexact accelerated proximal gradient method to generate an initial iteration point which is important; then it applies the Newton-CG method to the dual problem. Numerical experiments illustrate that the algorithm can supply an acceptable and even highly accurate solution, while algorithms without generating a good initial point may probably fail.
引用
收藏
页码:436 / 450
页数:15
相关论文
共 50 条
  • [1] An Inexact Accelerated Proximal Gradient Method and a Dual Newton-CG Method for the Maximal Entropy Problem
    Chengjing Wang
    Aimin Xu
    [J]. Journal of Optimization Theory and Applications, 2013, 157 : 436 - 450
  • [2] A Riemannian inexact Newton-CG method for stochastic inverse singular value problems
    Ma, Ru-Ru
    Bai, Zheng-Jian
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2021, 28 (01)
  • [3] A Riemannian inexact Newton-CG method for constructing a nonnegative matrix with prescribed realizable spectrum
    Zhi Zhao
    Zheng-Jian Bai
    Xiao-Qing Jin
    [J]. Numerische Mathematik, 2018, 140 : 827 - 855
  • [4] A Riemannian inexact Newton-CG method for constructing a nonnegative matrix with prescribed realizable spectrum
    Zhao, Zhi
    Bai, Zheng-Jian
    Jin, Xiao-Qing
    [J]. NUMERISCHE MATHEMATIK, 2018, 140 (04) : 827 - 855
  • [5] A smoothing trust-region Newton-CG method for minimax problem
    Ye, Feng
    Liu, Hongwei
    Zhou, Shuisheng
    Liu, Sanyang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 199 (02) : 581 - 589
  • [6] An Improved Distributed Dual Newton-CG Method for Convex Quadratic Programming Problems
    Kozma, Attila
    Klintberg, Emil
    Gros, Sebastien
    Diehl, Moritz
    [J]. 2014 AMERICAN CONTROL CONFERENCE (ACC), 2014,
  • [7] A NEWTON-CG AUGMENTED LAGRANGIAN METHOD FOR SEMIDEFINITE PROGRAMMING
    Zhao, Xin-Yuan
    Sun, Defeng
    Toh, Kim-Chuan
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) : 1737 - 1765
  • [8] Complexity of a projected Newton-CG method for optimization with bounds
    Xie, Yue
    Wright, Stephen J.
    [J]. MATHEMATICAL PROGRAMMING, 2024, 207 (1-2) : 107 - 144
  • [9] An Efficient Inexact Newton-CG Algorithm for the Smallest Enclosing Ball Problem of Large Dimensions
    Liu Y.-F.
    Diao R.
    Ye F.
    Liu H.-W.
    [J]. Journal of the Operations Research Society of China, 2016, 4 (2) : 167 - 191
  • [10] A Relax Inexact Accelerated Proximal Gradient Method for the Constrained Minimization Problem of Maximum Eigenvalue Functions
    Wang, Wei
    Li, Shanghua
    Gao, Jingjing
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,