The impact of the ITER-like wall at JET on disruptions

被引:66
|
作者
de Vries, P. C. [1 ]
Arnoux, G. [2 ]
Huber, A. [3 ]
Flanagan, J. [2 ]
Lehnen, M. [3 ]
Riccardo, V. [2 ]
Reux, C. [4 ]
Jachmich, S. [5 ]
Lowry, C. [6 ]
Calabro, G. [7 ]
Frigione, D. [7 ]
Tsalas, M. [1 ]
Hartmann, N. [3 ]
Brezinsek, S. [3 ]
Clever, M. [3 ]
Douai, D. [8 ]
Groth, M. [9 ]
Hender, T. C. [2 ]
Hodille, E. [10 ]
Joffrin, E. [8 ]
Kruezi, U. [3 ]
Matthews, G. F. [2 ]
Morris, J. [2 ]
Neu, R. [11 ]
Philipps, V. [3 ]
Sergienko, G. [3 ]
Sertoli, M. [10 ]
机构
[1] EURATOM, FOM Inst DIFFER, Nieuwegein, Netherlands
[2] Culham Sci Ctr, CCFE EURATOM Assoc, Abingdon OX14 3DB, Oxon, England
[3] EURATOM, Forschungszentrum Julich, Inst Energie & Klimatforsch IEK 4, D-52425 Julich, Germany
[4] Ecole Polytech, CNRS, F-91128 Palaiseau, France
[5] ERM KMS, Assoc Euratom Etat Belge Belg Staat, Brussels, Belgium
[6] Commiss European Communities, B-1049 Brussels, Belgium
[7] Assoc Euratom ENEA Fus, I-00044 Rome, Italy
[8] CEA, IRFM, F-13108 St Paul Les Durance, France
[9] Aalto Univ, Assoc EURATOM Tekes, Espoo, Finland
[10] Ecole Cent Lyon, F-69134 Ecully, France
[11] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany
关键词
DENSITY LIMIT; ASDEX UPGRADE; MITIGATION; TOKAMAKS; DIVERTOR; PLASMAS;
D O I
10.1088/0741-3335/54/12/124032
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The new full-metal ITER-like wall (ILW) at JET was found to have a profound impact on the physics of disruptions. The main difference is a significantly lower fraction (by up to a factor of 5) of energy radiated during the disruption process, yielding higher plasma temperatures after the thermal quench and thus longer current quench times. Thus, a larger fraction of the total energy was conducted to the wall resulting in larger heat loads. Active mitigation by means of massive gas injection became a necessity to avoid beryllium melting already at moderate levels of thermal and magnetic energy (i.e. already at plasma currents of 2 MA). A slower current quench, however, reduced the risk of runaway generation. Another beneficial effect of the ILW is that disruptions have a negligible impact on the formation and performance of the subsequent discharge.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Impact and mitigation of disruptions with the ITER-like wall in JET
    Lehnen, M.
    Arnoux, G.
    Brezinsek, S.
    Flanagan, J.
    Gerasimov, S. N.
    Hartmann, N.
    Hender, T. C.
    Huber, A.
    Jachmich, S.
    Kiptily, V.
    Kruezi, U.
    Matthews, G. F.
    Morris, J.
    Plyusnin, V. V.
    Reux, C.
    Riccardo, V.
    Sieglin, B.
    de Vries, P. C.
    [J]. NUCLEAR FUSION, 2013, 53 (09)
  • [2] The influence of an ITER-like wall on disruptions at JET
    de Vries, P. C.
    Baruzzo, M.
    Hogeweij, G. M. D.
    Jachmich, S.
    Joffrin, E.
    Lomas, P. J.
    Matthews, G. F.
    Murari, A.
    Nunes, I.
    Puetterich, T.
    Reux, C.
    Vega, J.
    [J]. PHYSICS OF PLASMAS, 2014, 21 (05)
  • [3] An ITER-like wall for JET
    Pamela, J.
    Matthews, G. F.
    Philipps, V.
    Kamendje, R.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2007, 363 : 1 - 11
  • [4] Wall conditioning of JET with the ITER-Like Wall
    Douai, D.
    Brezinsek, S.
    Esser, H. G.
    Joffrin, E.
    Keenan, T.
    Knipe, S.
    Kogut, D.
    Lomas, P. J.
    Marsen, S.
    Nunes, I.
    Philipps, V.
    Pitts, R. A.
    Shimada, M.
    de Vries, P.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2013, 438 : S1172 - S1176
  • [5] Operation of JET with an ITER-like Wall
    Horton, Lorne
    [J]. FUSION ENGINEERING AND DESIGN, 2015, 96-97 : 28 - 33
  • [6] Power handling of the JET ITER-like wall
    Arnoux, G.
    Balboa, I.
    Clever, M.
    Devaux, S.
    De Vries, P.
    Eich, T.
    Firdaouss, M.
    Jachmich, S.
    Lehnen, M.
    Lomas, P. J.
    Matthews, G. F.
    Mertens, Ph
    Nunes, I.
    Riccardo, V.
    Ruset, C.
    Sieglin, B.
    Valcarcel, D. F.
    Wilson, J.
    Zastrow, K-D
    [J]. PHYSICA SCRIPTA, 2014, T159
  • [7] Overview of the JET ITER-like Wall Project
    Philipps, V.
    Mertens, Ph.
    Matthews, G. F.
    Maier, H.
    [J]. FUSION ENGINEERING AND DESIGN, 2010, 85 (7-9) : 1581 - 1586
  • [8] Overview of the JET ITER-like wall divertor
    Widdowson, A.
    Alves, E.
    Baron-Wiechec, A.
    Barradas, N. P.
    Catarino, N.
    Coad, J. P.
    Corregidor, V.
    Garcia-Carrasco, A.
    Heinola, K.
    Koivuranta, S.
    Krat, S.
    Lahtinen, A.
    Likonen, J.
    Mayer, M.
    Petersson, P.
    Rubel, M.
    Van Boxel, S.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Apruzzese, G.
    Arena, P.
    [J]. NUCLEAR MATERIALS AND ENERGY, 2017, 12 : 499 - 505
  • [9] Calorimetry of the JET ITER-Like Wall components
    Devaux, S.
    Arnoux, G.
    Corre, Y.
    Gardarein, J-L.
    Gaspar, J.
    Jacquet, P.
    Marcotte, F.
    Matthews, G.
    Beaumont, P.
    Cramp, S.
    Dalley, S.
    Kinna, D.
    Horton, A.
    Lomas, P.
    Mertens, Ph.
    Riccardo, V.
    Valcarcel, D.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2013, 438 : S1208 - S1211
  • [10] Engineering challenges of the JET ITER-like Wall
    Riccardo, V.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2009, 390-91 : 895 - 899