Mathematical Modeling of Axonal Formation Part I: Geometry

被引:13
|
作者
Pearson, Yanthe E. [1 ]
Castronovo, Emilio [2 ]
Lindsley, Tara A. [3 ]
Drew, Donald A. [4 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
[2] Royal Bank Scotland, Stamford, CT USA
[3] Albany Med Coll, Albany, NY 12208 USA
[4] Rensselaer Polytech Inst, Troy, NY USA
关键词
Axonogenesis; Stochastic model; Parameter estimation; Data smoothing; Coarse graining; GROWTH CONE; TIME-LAPSE; HIPPOCAMPAL-NEURONS; GUIDANCE; DYNAMICS; MOTION; SIMULATION; EMBRYOS;
D O I
10.1007/s11538-011-9648-2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A stochastic model is proposed for the position of the tip of an axon. Parameters in the model are determined from laboratory data. The first step is the reduction of inherent error in the laboratory data, followed by estimating parameters and fitting a mathematical model to this data. Several axonogenesis aspects have been investigated, particularly how positive axon elongation and growth cone kinematics are coupled processes but require very different theoretical descriptions. Preliminary results have been obtained through a series of experiments aimed at isolating the response of axons to controlled gradient exposures to guidance cues and the effects of ethanol and similar substances. We show results based on the following tasks; (A) development of a novel filtering strategy to obtain data sets truly representative of the axon trail formation; (B) creation of a coarse graining method which establishes (C) an optimal parameter estimation technique, and (D) derivation of a mathematical model which is stochastic in nature, parameterized by arc length. The framework and the resulting model allow for the comparison of experimental and theoretical mean square displacement (MSD) of the developing axon. Current results are focused on uncovering the geometric characteristics of the axons and MSD through analytical solutions and numerical simulations parameterized by arc length, thus ignoring the temporal growth processes. Future developments will capture the dynamic growth cone and how it behaves as a function of time. Qualitative and quantitative predictions of the model at specific length scales capture the experimental behavior well.
引用
收藏
页码:2837 / 2864
页数:28
相关论文
共 50 条
  • [1] Mathematical Modeling of Axonal Formation Part I: Geometry
    Yanthe E. Pearson
    Emilio Castronovo
    Tara A. Lindsley
    Donald A. Drew
    [J]. Bulletin of Mathematical Biology, 2011, 73 : 2837 - 2864
  • [2] Mathematical modeling and simulation of PV systems Part I: Mathematical modeling and Simulink implementation
    Hoarca, Ioan Cristian
    [J]. 2021 INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL ELECTRICITY (ICATE), 2021,
  • [3] STRUCTURAL BEHAVIOR OF UMBILICALS - PART I: MATHEMATICAL MODELING
    Pesce, Celso Pupo
    Ramos, Roberto, Jr.
    Yamada da Silveira, Lauro Massao
    Tanaka, Rafael Loureiro
    Martins, Clovis de Arruda
    Moraes Takafuji, Fernanda Cristina
    Zilio Novaes, Joao Paulo
    Ferreira Godinho, Carlos Alberto
    [J]. PROCEEDINGS OF THE ASME 29TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING 2010, VOL 5, PTS A AND B, 2010, : 871 - 880
  • [4] Mathematical modeling of scroll compressors - part I: compression process modeling
    Chen, Y
    Halm, NP
    Groll, EA
    Braun, JE
    [J]. INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2002, 25 (06): : 731 - 750
  • [5] Condensation in Radial Turbines-Part I: Mathematical Modeling
    Schuster, Sebastian
    Brillert, Dieter
    Benra, Friedrich-Karl
    [J]. JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2018, 140 (10):
  • [6] Hairiness of staple fiber yarns part I: mathematical modeling
    Neckar, Bohuslav
    Das, Dipayan
    Krupincova, Gabriela
    [J]. JOURNAL OF THE TEXTILE INSTITUTE, 2016, 107 (03) : 327 - 337
  • [7] Structural stability of slender aerospace vehicles: Part I Mathematical modeling
    Trikha, M.
    Mahapatra, D. Roy
    Gopalakrishnan, S.
    Pandiyan, R.
    [J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2010, 52 (07) : 937 - 951
  • [8] On the chaotic and periodic behavior of the power converter Part I: the mathematical modeling
    Bogdan, Andrei I.
    Bizon, Nicu
    Oproescu, Mihai
    Bogdan, Andrei Ion
    Bizon, Nicu
    [J]. PROCEEDINGS OF THE 2014 6TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTERS AND ARTIFICIAL INTELLIGENCE (ECAI), 2014,
  • [9] THE MATHEMATICAL-MODELING OF CLUSTER GEOMETRY
    BYTHEWAY, I
    KEPERT, DL
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 1992, 9 (02) : 161 - 180
  • [10] Mathematical modeling and parameter estimation of axonal cargo transport
    Kouroush Sadegh Zadeh
    Sameer B. Shah
    [J]. Journal of Computational Neuroscience, 2010, 28 : 495 - 507