Longitudinal models for non-stationary exponential data

被引:2
|
作者
Hasan, M. Tariqul [1 ]
机构
[1] Univ New Brunswick, Dept Math & Stat, Fredericton, NB E3B 5A3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
exponential auto-regressive; generalized quasi-likelihood estimation; method of moments; moving average and equi-correlation processes; repeated exponential failure times;
D O I
10.1109/TR.2008.928188
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In many manufacturing studies, longitudinal failure time data comprise repeated exponential responses, and a set of multi-dimensional covariates for a large number of independent components or objects. When the covariates collected along with exponential failure times are time dependent, the responses of an object exhibit non-stationary correlations. We examine the effects of the covariates by taking this non-stationary correlation structure into account. First, we develop Gaussian type non-stationary AR(1), MA(1), and exchangeable correlation structures for the repeated exponential failure times; and then exploit the suitable auto-correlation structure to obtain consistent, efficient estimates for the effects of the covariates by using a generalized quasi-likelihood (GQL) estimating equation approach. The finite sample estimation performance of the GQL approach is examined through a simulation study.
引用
收藏
页码:480 / 488
页数:9
相关论文
共 50 条
  • [1] Dynamic Models for Longitudinal Ordinal Non-stationary Categorical Data
    Sutradhar, Brajendra C.
    Dasgupta, Nairanjana
    [J]. ADVANCES AND CHALLENGES IN PARAMETRIC AND SEMI-PARAMETRIC ANALYSIS FOR CORRELATED DATA, 2016, 218 : 169 - 197
  • [2] Longitudinal data analysis: Non-stationary error structures and antedependent models
    Nunez-Anton, V
    [J]. APPLIED STOCHASTIC MODELS AND DATA ANALYSIS, 1997, 13 (3-4): : 279 - 287
  • [3] A Semiparametric Regression Model for Longitudinal Data with Non-stationary Errors
    Li, Rui
    Leng, Chenlei
    You, Jinhong
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2017, 44 (04) : 932 - 950
  • [4] Non-stationary Subdivision for Exponential Polynomials Reproduction
    Bao-jun LI
    Zhi-ling YU
    Bo-wen YU
    Zhi-xun SU
    Xiu-ping LIU
    [J]. Acta Mathematicae Applicatae Sinica, 2013, (03) : 567 - 578
  • [5] Non-stationary Subdivision for Exponential Polynomials Reproduction
    Li, Bao-jun
    Yu, Zhi-ling
    Yu, Bo-wen
    Su, Zhi-xun
    Liu, Xiu-ping
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (03): : 567 - 578
  • [6] Non-stationary subdivision for exponential polynomials reproduction
    Bao-jun Li
    Zhi-ling Yu
    Bo-wen Yu
    Zhi-xun SU
    Xiu-ping Liu
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 567 - 578
  • [7] Markovian Segmentation of Non-stationary Data Corrupted by Non-stationary Noise
    Habbouchi, Ahmed
    Boudaren, Mohamed El Yazid
    Senouci, Mustapha Reda
    Aissani, Amar
    [J]. ADVANCES IN COMPUTING SYSTEMS AND APPLICATIONS, 2022, 513 : 27 - 37
  • [8] Parsimonious correlated non-stationary models for real UWB data
    Zhan, QT
    Song, SH
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-7, 2004, : 3419 - 3423
  • [9] Dirichlet process mixture models for non-stationary data streams
    Casado, Ioar
    Perez, Aritz
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 873 - 878
  • [10] Evaluating restricted common factor models for non-stationary data
    Di Iorio, Francesca
    Fachin, Stefano
    [J]. ECONOMETRICS AND STATISTICS, 2021, 17 : 64 - 75