Estimating photometric redshifts of quasars using support vector machines

被引:0
|
作者
Wang, Dan [1 ]
Zhang, Yanxia [1 ]
Zhao, Yongheng [1 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China
关键词
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
With various algorithms successfully applied for measuring photometric redshifts of galaxies, we utilize support vector machines (SVMs), an empirical training-set method, to estimate photometric redshifts of quasars by means of five-band photometry data from Sloan Digital Sky Survey (SDSS). Using a sample of 67,491 quasars from SDSS Data Release Five (SDSS DR5), we explore the influence of model parameters of SVMs on the accuracy of photometric redshifts of quasars. SVMs are trained on two thirds of sample, and tested on the rest sample. The variance between the photometric and spectroscopic redshifts is 0.119, and 48.94%, 70.71% and 78.12% of the objects are within Delta z<0.1, 0.2 and 0.3, respectively. Compared to the color-redshift-relation (CZR), SVMs show their superiority.
引用
收藏
页码:509 / 512
页数:4
相关论文
共 50 条
  • [1] Estimating photometric redshifts using support vector machines
    Wadadekar, Y
    [J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2005, 117 (827) : 79 - 85
  • [2] Support vector machines for photometric redshift measurement of quasars
    Zheng, Hongwen
    Zhang, Yanxia
    [J]. SOFTWARE AND CYBERINFRASTRUCTURE FOR ASTRONOMY II, 2012, 8451
  • [3] A new strategy for estimating photometric redshifts of quasars
    Yan-Xia Zhang
    Jing-Yi Zhang
    Xin Jin
    Yong-Heng Zhao
    [J]. Research in Astronomy and Astrophysics, 2019, 19 (12) : 57 - 68
  • [4] A new strategy for estimating photometric redshifts of quasars
    Zhang, Yan-Xia
    Zhang, Jing-Yi
    Jin, Xin
    Zhao, Yong-Heng
    [J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2019, 19 (12)
  • [5] Photometric redshifts of quasars
    Richards, GT
    Weinstein, MA
    Schneider, DP
    Fan, XH
    Strauss, MA
    Vanden Berk, DE
    Annis, J
    Burles, S
    Laubacher, EM
    York, DG
    Frieman, JA
    Johnston, D
    Scranton, R
    Gunn, JE
    Nichol, RC
    Ivezic, Z
    Nichol, RC
    Budavári, T
    Csabai, I
    Szalay, AS
    Connolly, AJ
    Szokoly, GP
    Bahcall, NA
    Benítez, N
    Brinkmann, J
    Brunner, R
    Fukugita, M
    Hall, PB
    Hennessy, GS
    Knapp, GR
    Kunszt, PZ
    Lamb, DQ
    Munn, JA
    Newberg, HJ
    Stoughton, C
    [J]. ASTRONOMICAL JOURNAL, 2001, 122 (03): : 1151 - 1162
  • [6] PhotoRedshift-MML: A multimodal machine learning method for estimating photometric redshifts of quasars
    Hong, Shuxin
    Zou, Zhiqiang
    Luo, A-Li
    Kong, Xiao
    Yang, Wenyu
    Chen, Yanli
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 518 (04) : 5049 - 5058
  • [7] An Automated Algorithm for Determining Photometric Redshifts of Quasars
    Wang, Dan
    Zhang, Yanxia
    Zhao, Yongheng
    [J]. SOFTWARE AND CYBERINFRASTRUCTURE FOR ASTRONOMY, 2010, 7740
  • [8] Estimating GARCH models using support vector machines
    Pérez-Cruz, F
    Afonso-Rodríguez, JA
    Giner, J
    [J]. QUANTITATIVE FINANCE, 2003, 3 (03) : 163 - 172
  • [9] Photometric Classification of Stars, Galaxies and Quasars in the Sloan Digital Sky Survey DR6 Using Support Vector Machines
    Elting, C.
    Bailer-Jones, C. A. L.
    Smith, K. W.
    [J]. CLASSIFICATION AND DISCOVERY IN LARGE ASTRONOMICAL SURVEYS, 2008, 1082 : 9 - 14
  • [10] Separating Quasars from Stars by Support Vector Machines
    Zhang, Yanxia
    Zheng, Hongwen
    Zhao, Yongheng
    [J]. SOFTWARE AND CYBERINFRASTRUCTURE FOR ASTRONOMY, 2010, 7740