Imaging the activity and localization of single voltage-gated Ca2+ channels by total internal reflection fluorescence microscopy

被引:80
|
作者
Demuro, A [1 ]
Parker, I [1 ]
机构
[1] Univ Calif Irvine, Dept Neurobiol & Behav, Irvine, CA USA
关键词
D O I
10.1016/S0006-3495(04)74373-8
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The patch-clamp technique has enabled functional studies of single ion channels, but suffers limitations including lack of spatial information and inability to independently monitor currents from more than one channel. Here, we describe the use of total internal reflection fluorescence microscopy as an alternative, noninvasive approach to optically monitor the activity and localization of multiple Ca2+-permeable channels in the plasma membrane. Images of near-membrane Ca2+ signals were obtained from >100 N-type channels expressed within restricted areas (80x80 mum) of Xenopus oocytes, thereby permitting simultaneous resolution of their gating kinetics, voltage dependence, and localization. Moreover, this technique provided information inaccessible by electrophysiological means, demonstrating that N-type channels are immobile in the membrane, show a patchy distribution, and display diverse gating kinetics even among closely adjacent channels. Total internal reflection fluorescence microscopy holds great promise for single-channel recording of diverse voltage- and ligand-gated Ca2+-permeable channels in the membrane of neurons and other isolated or cultured cells, and has potential for high-throughput functional analysis of single channels.
引用
收藏
页码:3250 / 3259
页数:10
相关论文
共 50 条
  • [1] Imaging activity of individual N-type Ca2+ channels by total internal reflection fluorescence microscopy
    Demuro, A
    BIOPHYSICAL JOURNAL, 2004, 86 (01) : 333A - 333A
  • [2] The β Subunit of Voltage-Gated Ca2+ Channels
    Buraei, Zafir
    Yang, Jian
    PHYSIOLOGICAL REVIEWS, 2010, 90 (04) : 1461 - 1506
  • [3] Targeting voltage-gated Ca2+ channels
    Striessnig, J
    LANCET, 2001, 357 (9264): : 1294 - 1294
  • [4] Regulation of voltage-gated Ca2+ channels by lipids
    Roberts-Crowley, Mandy L.
    Mitra-Ganguli, Tora
    Liu, Liwang
    Rittenhouse, Ann R.
    CELL CALCIUM, 2009, 45 (06) : 589 - 601
  • [5] Structure and regulation of voltage-gated Ca2+ channels
    Catterall, WA
    ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2000, 16 : 521 - 555
  • [6] Transcriptional regulation of voltage-gated Ca2+ channels
    Gonzalez-Ramirez, R.
    Felix, R.
    ACTA PHYSIOLOGICA, 2018, 222 (01)
  • [7] Genetics and pathology of voltage-gated Ca2+ channels
    Ophoff, RA
    Terwindt, GM
    Ferrari, MD
    Frants, RR
    HISTOLOGY AND HISTOPATHOLOGY, 1998, 13 (03) : 827 - 836
  • [8] Inhibition of voltage-gated Ca2+ channels by antazoline
    Milhaud, D
    Fagni, L
    Bockaert, J
    Lafon-Cazal, M
    NEUROREPORT, 2002, 13 (14) : 1711 - 1714
  • [9] Molecular regulation of voltage-gated Ca2+ channels
    Felix, R
    JOURNAL OF RECEPTORS AND SIGNAL TRANSDUCTION, 2005, 25 (02) : 57 - 71
  • [10] Fluorescence detection of plant extracts that affect neuronal voltage-gated Ca2+ channels
    Rogers, KL
    Fong, WF
    Redburn, J
    Griffiths, LR
    EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2002, 15 (04) : 321 - 330