Remaining Useful Life Prediction for Turbofan Engine using SAE-TCN Model

被引:0
|
作者
Zhang, Yiming [1 ]
Liu, Xiaofeng [1 ]
机构
[1] Beihang Univ, Sch Transportat Sci & Engn, Beijing, Peoples R China
关键词
Deep Learning; Turbofan Engine; Remaining Useful Life Prediction; Temporal Convolutional Network; Autoencoder; Target Generation; LSTM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Turbofan engines are known as the heart of the aircraft, as important equipment of the aircraft, the health state of the engine determines the aircraft's operational status. Therefore, the equipment monitoring and maintenance of the engine is an important part of ensuring the healthy and stable operation of the aircraft, and the remaining useful life (RUL) prediction of the engine is an important part of it. The monitoring data of turbofan engines have a high dimension and a long time span, which brings difficulties to predicting the remaining useful life of the engine. This paper proposes a residual life prediction model based on Autoencoder and temporal convolutional network (TCN). Among them, Autoencoder is used to reduce the dimension of the data and extract features from the engine monitoring data. The obtained low-dimensional data is trained in the TCN network to predict the remaining useful life. The model mentioned in this article is verified on the NASA public dataset(C-MAPSS) and compared with common machine learning methods and other deep neural networks. The experimental results show that the model proposed in this paper performs best in the evaluation methods, and this conclusion has important implications for engine health.
引用
收藏
页码:8280 / 8285
页数:6
相关论文
共 50 条
  • [1] Remaining Useful Life Prediction for Turbofan Engine Using SAE-TCN Model
    Liu, Xiaofeng
    Xiong, Liuqi
    Zhang, Yiming
    Luo, Chenshuang
    Bureerat, Sujin
    [J]. AEROSPACE, 2023, 10 (08)
  • [2] Prediction of remaining useful life of turbofan engine based on optimized model
    Liu, Yuefeng
    Zhang, Xiaoyan
    Guo, Wei
    Bian, Haodong
    He, Yingjie
    Liu, Zhen
    [J]. 2021 IEEE 20TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2021), 2021, : 1473 - 1477
  • [3] A Genetic Algorithm Optimized RNN-LSTM Model for Remaining Useful Life Prediction of Turbofan Engine
    Chui, Kwok Tai
    Gupta, Brij B.
    Vasant, Pandian
    [J]. ELECTRONICS, 2021, 10 (03) : 1 - 15
  • [4] Remaining Useful Life Prediction of an Aircraft Turbofan Engine Using Deep Layer Recurrent Neural Networks
    Thakkar, Unnati
    Chaoui, Hicham
    [J]. ACTUATORS, 2022, 11 (03)
  • [5] Remaining useful life prediction of turbofan engine using global health degradation representation in federated learning
    Chen, Xi
    Wang, Hui
    Lu, Siliang
    Xu, Jiawen
    Yan, Ruqiang
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 239
  • [6] An improved prognostics model with its application to the remaining useful life of turbofan engine
    He, Jia-Jun
    Zhao, Yong-Ping
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2022, 236 (10) : 2108 - 2130
  • [7] Remaining useful life prediction of turbofan engine with GA optimized hybrid neural network
    Huang, Hong
    Jin, Junyang
    Zhang, Yong
    Yuan, Ye
    [J]. PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 476 - 481
  • [8] Remaining Useful Life Estimation of Turbofan Engine Using LSTM Neural Networks
    Lan, Guoxing
    Li, Qing
    Cheng, Nong
    [J]. 2018 IEEE CSAA GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2018,
  • [9] A denoising semi-supervised deep learning model for remaining useful life prediction of turbofan engine degradation
    Youming Wang
    Yue Wang
    [J]. Applied Intelligence, 2023, 53 : 22682 - 22699
  • [10] A Deep Learning Model for Remaining Useful Life Prediction of Aircraft Turbofan Engine on C-MAPSS Dataset
    Asif, Owais
    Haider, Sajjad Ali
    Naqvi, Syed Rameez
    Zaki, John F. W.
    Kwak, Kyung-Sup
    Islam, S. M. Riazul
    [J]. IEEE ACCESS, 2022, 10 : 95425 - 95440