A note on -optimal designs for multiresponse models

被引:0
|
作者
Liu, Xin [1 ]
Yue, Rong-Xian [2 ,3 ,4 ]
机构
[1] Donghua Univ, Coll Sci, Shanghai 201600, Peoples R China
[2] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[3] Shanghai Univ, Sci Comp Key Lab, Shanghai 200234, Peoples R China
[4] Shanghai Univ, Div Sci Computat, E Inst, Shanghai 200234, Peoples R China
关键词
R-optimality; Multiresponse models; General equivalence theorem; CRITERIA;
D O I
10.1007/s00184-012-0400-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers the optimal design problem for multiresponse regression models. The -optimality introduced by Dette (J R Stat Soc B 59:97-110, 1997) for single response experiments is extended to the case of multiresponse parameter estimation. A general equivalence theorem for the -optimality is provided for multiresponse models. Illustrative examples of the -optimal designs for two multiresponse models are presented based on the general equivalence theorem.
引用
收藏
页码:483 / 493
页数:11
相关论文
共 50 条
  • [1] Optimal designs for multiresponse models with double covariance structure
    Rodriguez-Diaz, J. M.
    Sanchez-Leon, G.
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2019, 189 : 1 - 7
  • [2] D-optimal designs for multiresponse linear models with a qualitative factor
    Yue, Rong-Xian
    Liu, Xin
    Chatterjee, Kashinath
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 124 : 57 - 69
  • [3] Optimal Design for Multiresponse Pharmacokinetic–Pharmacodynamic Models – Dealing with Unbalanced Designs
    Kayode Ogungbenro
    Ivelina Gueorguieva
    Oneeb Majid
    Gordon Graham
    Leon Aarons
    [J]. Journal of Pharmacokinetics and Pharmacodynamics, 2007, 34 : 313 - 331
  • [4] D-Optimal Designs for the Multiresponse Trigonometric Regression Models on an Interval
    Zhang, Xuan-Hao
    Xu, Ling
    [J]. PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION (ICMS2011), VOL 1, 2011, : 329 - 332
  • [5] Optimal design for multiresponse pharmacokinetic-pharmacodynamic models - Dealing with unbalanced designs
    Ogungbenro, Kayode
    Gueorguieva, Ivelina
    Majid, Oneeb
    Graham, Gordon
    Aarons, Leon
    [J]. JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2007, 34 (03) : 313 - 331
  • [6] Minimax Designs for Approximately Linear Multiresponse Models
    Yue, Rong-Xian
    Liu, Xin
    [J]. FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 1, PROCEEDINGS, 2008, : 324 - 328
  • [7] SOME PROPERTIES OF MULTIRESPONSE D-OPTIMAL DESIGNS
    CHANG, SI
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (02) : 256 - 262
  • [8] OPTIMAL DESIGNS TO IMPROVE THE POWER OF MULTIRESPONSE HYPOTHESIS TESTS
    WIJESINHA, MC
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1993, 22 (02) : 587 - 602
  • [9] OPTIMAL HIERARCHIAL FACTORIAL DESIGNS - MULTIPLE DESIGN MULTIRESPONSE CASE
    GIVENS, SV
    HINKELMA.K
    [J]. BIOMETRICS, 1974, 30 (03) : 560 - 560
  • [10] D-optimal Designs for Multiresponse Linear Models with a Qualitative Factor Under General Covariance Structure
    Rong-Xian YUE
    Xin LIU
    Kashinath CHATTERJEE
    [J]. Acta Mathematicae Applicatae Sinica, 2023, 39 (04) : 878 - 885