On a toy model of interacting neurons

被引:40
|
作者
Fournier, Nicolas [1 ]
Loecherbach, Eva [2 ]
机构
[1] UPMC, UMR 7599, Lab Probabilites & Modeles Aleatoires, Case 188,4 Pl Jussieu, F-75252 Paris 5, France
[2] Univ Cergy Pontoise, Dept Math, CNRS UMR 8088, 2 Ave Adolphe Chauvin, F-95302 Cergy Pontoise, France
关键词
Piecewise deterministic Markov processes; Mean-field interaction; Biological neural nets; Interacting particle systems; Nonlinear stochastic differential equations; MEAN-FIELD LIMIT; NEURAL-NETWORKS; INEQUALITIES;
D O I
10.1214/15-AIHP701
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We continue the study of a stochastic system of interacting neurons introduced in De Masi, Galves, Locherbach and Presutti (J. Stat. Phys. 158 (2015) 866-902). The system consists of N neurons, each spiking randomly with rate depending on its membrane potential. At its spiking time, the neuron potential is reset to 0 and all other neurons receive an additional amount 1/N of potential. Moreover, electrical synapses induce a deterministic drift of the system towards its average potential. We prove propagation of chaos of the system, as N -> infinity, to a limit nonlinear jumping stochastic differential equation. We consequently improve on the results of (J. Stat. Phys. 158 (2015) 866-902), since (i) we remove the compact support condition on the initial datum, (ii) we get a rate of convergence in 1/root N. Finally, we study the limit equation: we describe the shape of its time-marginals, we prove the existence of a unique nontrivial invariant distribution, we show that the trivial invariant distribution is not attractive, and in a special case, we establish the convergence to equilibrium.
引用
收藏
页码:1844 / 1876
页数:33
相关论文
共 50 条
  • [1] On a toy network of neurons interacting through their dendrites
    Fournier, Nicolas
    Tanre, Etienne
    Veltz, Romain
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (02): : 1041 - 1071
  • [2] A TOY VERSION OF THE INTERACTING BOSON MODEL
    BHAUMIK, D
    SEN, S
    DUTTAROY, B
    [J]. AMERICAN JOURNAL OF PHYSICS, 1991, 59 (08) : 719 - 722
  • [3] Hawking Effect for a Toy Model of Interacting Fermions
    Patrick Bouvier
    Christian Gérard
    [J]. Annales Henri Poincaré, 2015, 16 : 1191 - 1230
  • [4] Hawking Effect for a Toy Model of Interacting Fermions
    Bouvier, Patrick
    Gerard, Christian
    [J]. ANNALES HENRI POINCARE, 2015, 16 (05): : 1191 - 1230
  • [5] A model of interacting quantum neurons with a dynamic synapse
    Torres, J. J.
    Manzano, D.
    [J]. NEW JOURNAL OF PHYSICS, 2022, 24 (07):
  • [6] A stochastic model for interacting neurons in the olfactory bulb
    Ascione, G.
    Carfora, M. F.
    Pirozzi, E.
    [J]. BIOSYSTEMS, 2019, 185
  • [7] Toy model
    Iulia Georgescu
    [J]. Nature Physics, 2012, 8 (6) : 444 - 444
  • [8] A Toy Forecast Model
    Sadowski, Witold
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2012, 119 (10): : 876 - 879
  • [9] Toy model of superconductivity
    Grigorishin, Konstantin V.
    Lev, Bohdan I.
    [J]. LOW TEMPERATURE PHYSICS, 2015, 41 (05) : 375 - 378
  • [10] Stimulation of signal transmission in the model of neurons interacting with an active transistor substrate
    E. O. Morozova
    O. A. Morozov
    V. B. Kazantsev
    [J]. Radiophysics and Quantum Electronics, 2013, 55 : 709 - 718