WIENER MEASURE FOR H-TYPE GROUP

被引:0
|
作者
Liu, Heping [1 ]
Wang, Yingzhan [2 ,3 ]
机构
[1] Peking Univ, LMAM, Sch Math Sci, Beijing 100871, Peoples R China
[2] S China Univ Technol, Sch Sci, Guangzhou 510641, Guangdong, Peoples R China
[3] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
基金
中国博士后科学基金; 高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
H-type group; sub-Laplacian operator; Wiener measure; Feynman-Kac formula; SPACE;
D O I
10.1142/S0129167X13500602
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
3 In this paper, we build Wiener measure for the path space on H-type group by using the heat kernel corresponding to the sub-Laplacian and give the definition of the Wiener integral. Then we give the Feynman-Kac formula.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Paley-Wiener type theorems on harmonic extensions of H-type groups
    DiBlasio, B
    [J]. MONATSHEFTE FUR MATHEMATIK, 1997, 123 (01): : 21 - 42
  • [2] Quaternion H-type group and differential operator Δλ
    Chang Der-Chen
    Markina, Irina
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (04): : 523 - 540
  • [3] Quaternion H-type group and differential operatorΔλ
    CHANG Der-Chen
    Irina MARKINA
    [J]. Science China Mathematics, 2008, (04) : 523 - 540
  • [4] Quaternion H-type group and differential operator Δλ
    Der-Chen Chang
    Irina Markina
    [J]. Science in China Series A: Mathematics, 2008, 51 : 523 - 540
  • [5] Hardy-Sobolev type inequalities on the H-type group
    Han, YH
    Niu, PC
    [J]. MANUSCRIPTA MATHEMATICA, 2005, 118 (02) : 235 - 252
  • [6] Hardy-Sobolev type inequalities on the H-type group
    Yazhou Han
    Pengcheng Niu
    [J]. manuscripta mathematica, 2005, 118 : 235 - 252
  • [7] Wiener measure for Heisenberg group
    LIU HePing
    WANG YingZhan
    [J]. Science China Mathematics, 2014, 57 (08) : 1605 - 1614
  • [8] Wiener measure for Heisenberg group
    HePing Liu
    YingZhan Wang
    [J]. Science China Mathematics, 2014, 57 : 1605 - 1614
  • [9] Wiener measure for Heisenberg group
    Liu HePing
    Wang YingZhan
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (08) : 1605 - 1614
  • [10] Sharp measure contraction property for generalized H-type Carnot groups
    Barilari, Davide
    Rizzi, Luca
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (06)