Nonlinear asymptotic calculation of the Kelvin-Helmholtz instability

被引:4
|
作者
Grigor'ev, A. I. [1 ]
Shiryaeva, S. O. [1 ]
Sukhanov, S. A. [1 ]
机构
[1] Demidov State Univ, Yaroslavl 150000, Russia
关键词
Density Ratio; HELMHOLTZ Instability; Resonance Factor; Dimensionless Wavenumber; Zeroth Plane;
D O I
10.1134/S1063784213030110
中图分类号
O59 [应用物理学];
学科分类号
摘要
The problem of periodic capillary-gravitational wave motion on the uniformly charged interface between two ideal immiscible incompressible liquids is solved in the third order of smallness. The lower liquid is assumed to be ideally conducting, while the upper one is a dielectric executing translational motion parallel to the interface with a constant velocity. A nonlinear frequency correction in the resonance form is found. It is shown that the positions of internal nonlinear resonances depend on the sum of the field and Weber parameters, the density ratio of the liquids, and the wave number. When the upper liquid is denser than the lower one, resonances are absent.
引用
收藏
页码:358 / 362
页数:5
相关论文
共 50 条
  • [1] Nonlinear asymptotic calculation of the Kelvin-Helmholtz instability
    A. I. Grigor’ev
    S. O. Shiryaeva
    S. A. Sukhanov
    [J]. Technical Physics, 2013, 58 : 358 - 362
  • [2] NONLINEAR KELVIN-HELMHOLTZ INSTABILITY
    陈乐山
    [J]. Applied Mathematics and Mechanics(English Edition), 1985, (11) : 1083 - 1096
  • [3] NONLINEAR DEVELOPMENT OF KELVIN-HELMHOLTZ INSTABILITY
    WEISSMAN, MA
    [J]. TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1972, 53 (04): : 417 - +
  • [4] NONLINEAR KELVIN-HELMHOLTZ INSTABILITY IN HYDROMAGNETICS
    MALIK, SK
    SINGH, M
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 1985, 109 (02) : 231 - 239
  • [5] NONLINEAR-THEORY OF KELVIN-HELMHOLTZ INSTABILITY
    ZHDANOV, SK
    [J]. PHYSICA D, 1995, 87 (1-4): : 375 - 379
  • [6] Weakly nonlinear analysis on the Kelvin-Helmholtz instability
    Wang, L. F.
    Ye, W. H.
    Fan, Z. F.
    Li, Y. J.
    He, X. T.
    Yu, M. Y.
    [J]. EPL, 2009, 86 (01)
  • [7] Mode coupling in nonlinear Kelvin-Helmholtz instability
    Wang Li-Feng
    Ye Wen-Hua
    Li Ying-Jun
    Meng Li-Min
    [J]. CHINESE PHYSICS B, 2008, 17 (10) : 3792 - 3798
  • [8] Mode coupling in nonlinear Kelvin-Helmholtz instability
    王立锋
    叶文华
    李英骏
    孟立民
    [J]. Chinese Physics B, 2008, 17 (10) : 3792 - 3798
  • [9] NONLINEAR ELECTROSTATIC DRIFT KELVIN-HELMHOLTZ INSTABILITY
    SHARMA, AC
    SRIVASTAVA, KM
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 1993, 200 (01) : 107 - 116
  • [10] NONLINEAR MHD KELVIN-HELMHOLTZ INSTABILITY IN A PIPE
    Chen Leshan Xu Fu (Institute of Mechanics
    [J]. Acta Mechanica Sinica, 1989, (02) : 176 - 190