A small time solutions for the Korteweg-de Vries equation using spline approximation

被引:11
|
作者
Irk, D [1 ]
Dag, I
Saka, B
机构
[1] Osmangazi Univ, Dept Math, TR-26480 Eskisehir, Turkey
[2] Osmangazi Univ, Comp Engn Dept, TR-26480 Eskisehir, Turkey
关键词
D O I
10.1016/j.amc.2005.04.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the one-dimensional nonlinear Korteweg-de Vries (KdV) equation is numerically solved using second order spline approximation. The test problems concerning the propagation of a solution and two solution interaction are used to validate the proposal scheme and it is found to be both accurate and efficient at small times. Also, it is shown that the second order spline approximation may be used effectively at small times when the exact solution of the KdV equation is not known. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:834 / 846
页数:13
相关论文
共 50 条
  • [1] A small time solutions for the Korteweg-de Vries equation
    Kutluay, S
    Bahadir, AR
    Özdes, A
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2000, 107 (2-3) : 203 - 210
  • [2] ON THE APPROXIMATION OF SOLUTIONS OF THE GENERALIZED KORTEWEG-DE VRIES-BURGERS EQUATION
    KARAKASHIAN, O
    MCKINNEY, W
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 1994, 37 (4-5) : 405 - 416
  • [3] Quasiperiodic solutions of the Korteweg-de Vries equation
    Yu. N. Zaiko
    [J]. Technical Physics Letters, 2002, 28 : 235 - 236
  • [4] Computability of solutions of the Korteweg-de Vries equation
    Gay, W
    Zhang, BY
    Zhong, N
    [J]. MATHEMATICAL LOGIC QUARTERLY, 2001, 47 (01) : 93 - 110
  • [5] On the singular solutions of the Korteweg-de Vries equation
    S. I. Pokhozhaev
    [J]. Mathematical Notes, 2010, 88 : 741 - 747
  • [6] Solutions to the modified Korteweg-de Vries equation
    Zhang, Da-Jun
    Zhao, Song-Lin
    Sun, Ying-Ying
    Zhou, Jing
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2014, 26 (07)
  • [7] Quasiperiodic solutions of the Korteweg-de Vries equation
    Zaiko, YN
    [J]. TECHNICAL PHYSICS LETTERS, 2002, 28 (03) : 235 - 236
  • [8] Primitive solutions of the Korteweg-de Vries equation
    Dyachenko, S. A.
    Nabelek, P.
    Zakharov, D. V.
    Zakharov, V. E.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 202 (03) : 334 - 343
  • [9] Complexiton solutions to the Korteweg-de Vries equation
    Ma, WX
    [J]. PHYSICS LETTERS A, 2002, 301 (1-2) : 35 - 44
  • [10] Analyticity of solutions of the Korteweg-de Vries equation
    Tarama, S
    [J]. JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2004, 44 (01): : 1 - 32