CLASSIFICATION OF FOUR-DIMENSIONAL REAL LIE BIALGEBRAS OF SYMPLECTIC TYPE AND THEIR POISSON-LIE GROUPS

被引:7
|
作者
Abedi-Fardad, J. [1 ,2 ]
Rezaei-Aghdam, A. [2 ]
Haghighatdoost, Gh. [1 ,3 ]
机构
[1] Univ Bonab, Dept Math, Tabriz, Iran
[2] Azarbaijan Shahid Madani Univ, Dept Phys, Tabriz, Iran
[3] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
关键词
Lie bialgebra; Poisson-Lie group; classical r-matrix; integrable system; ALGEBRAS;
D O I
10.1134/S0040577917010019
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We classify all four-dimensional real Lie bialgebras of symplectic type and obtain the classical r-matrices for these Lie bialgebras and Poisson structures on all the associated four-dimensional Poisson-Lie groups. We obtain some new integrable models where a Poisson-Lie group plays the role of the phase space and its dual Lie group plays the role of the symmetry group of the system.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [1] Classification of four-dimensional real Lie bialgebras of symplectic type and their Poisson–Lie groups
    J. Abedi-Fardad
    A. Rezaei-Aghdam
    Gh. Haghighatdoost
    [J]. Theoretical and Mathematical Physics, 2017, 190 : 1 - 17
  • [2] Classification of real three-dimensional Lie bialgebras and their Poisson-Lie groups
    Rezaei-Aghdam, A
    Hemmati, M
    Rastkar, AR
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (18): : 3981 - 3994
  • [3] CENTRAL EXTENSIONS OF LIE BIALGEBRAS AND POISSON-LIE GROUPS
    BENAYED, M
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 1995, 16 (03) : 301 - 304
  • [4] On the Classification of Real Four-Dimensional Lie Groups
    Biggs, Rory
    Remsing, Claudiu C.
    [J]. JOURNAL OF LIE THEORY, 2016, 26 (04) : 1001 - 1035
  • [5] Classification of real three-dimensional Poisson-Lie groups
    Ballesteros, Angel
    Blasco, Alfonso
    Musso, Fabio
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (17)
  • [6] (1+1) Schrodinger Lie bialgebras and their Poisson-Lie groups
    Ballesteros, A
    Herranz, FJ
    Parashar, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (17): : 3445 - 3465
  • [7] Darboux Families and the Classification of Real Four-Dimensional Indecomposable Coboundary Lie Bialgebras
    de Lucas, Javier
    Wysocki, Daniel
    [J]. SYMMETRY-BASEL, 2021, 13 (03):
  • [8] Symplectic leaves of complex reductive Poisson-Lie groups
    Yakimov, M
    [J]. DUKE MATHEMATICAL JOURNAL, 2002, 112 (03) : 453 - 509
  • [9] Lie bialgebras of complex type and associated Poisson Lie groups
    Andrada, A.
    Barberis, M. L.
    Ovando, G.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (10) : 1310 - 1328
  • [10] Poisson-Lie T-duality for quasitriangular Lie bialgebras
    Beggs, EJ
    Majid, S
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 220 (03) : 455 - 488