Unsupervised SAR Imagery Segmentation Based on SVDD

被引:0
|
作者
Zhang, XiongMei [1 ]
Song, JianShe [1 ]
Yi, ZhaoXiang [1 ]
Wang, RuiHua [1 ]
机构
[1] Xian Res Inst High Tech, Xian 710025, Peoples R China
关键词
SAR imagery; support vector domain description(SVDD); unsupervised segmentation; texture feature; Bayesian decision;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Based on the extraction of texture features, the Bayesian decision rule is employed to identify the decision threshold that separates the target from the background in the magnitude image. Then, the training samples for the SVDD classifier are automatically selected and used to train the classifier. Finally, the trained SVDD classifier is used to classify the rest pixels of the thresholding process. Experimental results obtained on real and simulated SAR imageries demonstrate the effectiveness of the proposed method.
引用
收藏
页码:25 / 31
页数:7
相关论文
共 50 条
  • [1] Unsupervised Multiresolution Segmentation of SAR Imagery Based on Region-Based Hierarchical Model
    Zhang, Yan
    Ju, Yanwei
    [J]. ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT II, 2011, 7003 : 227 - +
  • [2] Multiscale unsupervised segmentation of SAR imagery using the genetic algorithm
    Wen, Xian-Bin
    Zhang, Hua
    Jiang, Ze-Tao
    [J]. SENSORS, 2008, 8 (03) : 1704 - 1711
  • [3] SVMMAP Modeling of SAR Imagery for Unsupervised Segmentation with Bootstrap Sampling
    Ju, Yanwei
    Zhang, Yan
    [J]. INTERNATIONAL CONFERENCE MACHINERY, ELECTRONICS AND CONTROL SIMULATION, 2014, 614 : 393 - 396
  • [4] Multiscale unsupervised segmentation of SAR imagery using genetic-based em algorithm
    School of Computer Science and Technology, Tianjin University of Technology, Tianjin 300191, China
    不详
    不详
    [J]. J. Inf. Comput. Sci., 2008, 1 (367-374):
  • [5] Flood Monitoring and Change Detection based on Unsupervised Image Segmentation and Fusion in Multitemporal SAR Imagery
    Avendano, J.
    Mora, S. F.
    Vera, J. E.
    Torres, J. A.
    Prieto, F. A.
    [J]. 2015 12TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE 2015), 2015,
  • [6] Spatially variant mixture multiscale autoregressive Modeling of SAR imagery for unsupervised segmentation
    Ju, YW
    Tian, Z
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2006, 15 (02) : 359 - 362
  • [7] Unsupervised Segmentation of HR SAR Time Series Amplitude Imagery Aiming on Context Based Change Categorization
    Boldt, Markus
    Thiele, Antje
    Schulz, Karsten
    Hinz, Stefan
    [J]. 10TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR (EUSAR 2014), 2014,
  • [8] An unsupervised segmentation method based on MPM for SAR images
    Cao, YF
    Sun, H
    Xu, X
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2005, 2 (01) : 55 - 58
  • [9] Unsupervised segmentation of SAR images
    Guo, GD
    Ma, SD
    [J]. IGARSS '98 - 1998 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS 1-5: SENSING AND MANAGING THE ENVIRONMENT, 1998, : 1150 - 1152
  • [10] APPLICATION OF GRADIENT BASED IMAGE SEGMENTATION TO SAR IMAGERY
    Piramanayagam, S.
    Cutler, P. J.
    Schwartzkopf, W.
    Koehler, F. W.
    Saber, E.
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4316 - 4319