Identities of Symmetry for Higher-Order Generalized q-Euler Polynomials

被引:0
|
作者
Dolgy, D. V. [1 ]
Kim, D. S. [2 ]
Kim, T. G. [3 ,4 ]
Seo, J. J. [5 ]
机构
[1] Far Eastern Fed Univ, Inst Math & Comp Sci, Vladivostok 690060, Russia
[2] Sogang Univ, Dept Math, Seoul 121742, South Korea
[3] Jangjeon Res Inst Math & Phys, Hapcheon Gun Kyungshang 678800, South Korea
[4] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[5] Pukyong Natl Univ, Dept Appl Math, Pusan 608737, South Korea
基金
新加坡国家研究基金会;
关键词
NUMBERS; EXTENSION; BERNOULLI; (H;
D O I
10.1155/2014/286239
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the properties of symmetry in two variables related to multiple Euler q-l-function which interpolates higher-order q-Euler polynomials at negative integers. From our investigation, we can derive many interesting identities of symmetry in two variables related to generalized higher-order q-Euler polynomials and alternating generalized q-power sums.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Symmetric identities of higher-order degenerate q-Euler polynomials
    Kim, Dae San
    Kim, Taekyun
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (02): : 443 - 451
  • [2] Some identities of symmetry for the generalized q-Euler polynomials
    Kim, Dae San
    Kim, Taekyun
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 235 : 408 - 411
  • [3] Some identities on the higher-order twisted q-Euler numbers and polynomials
    Ryoo, C. S.
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (05) : 825 - 830
  • [4] SYMMETRY IDENTITIES OF HIGHER-ORDER q-EULER POLYNOMIALS UNDER THE SYMMETRIC GROUP OF DEGREE FOUR
    Kim, Dae San
    Kim, Taekyun
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (03) : 521 - 527
  • [5] Generalized q-Euler Numbers and Polynomials of Higher Order and Some Theoretic Identities
    Kim, T.
    Kim, Y. H.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [6] On the Higher-Order q-Euler Numbers and Polynomials with Weight α
    Hwang, K. -W.
    Dolgy, D. V.
    Kim, T.
    Lee, S. H.
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011
  • [7] Some explicit identities for the modified higher-order degenerate q-Euler polynomials and their zeroes
    Jang, Lee-Chae
    Kim, Byung Moon
    Choi, Sang-Ki
    Ryoo, C. S.
    Dolgy, D. V.
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (05): : 2524 - 2538
  • [8] On the Symmetric Properties of Higher-Order Twisted q-Euler Numbers and Polynomials
    Moon, Eun-Jung
    Rim, Seog-Hoon
    Jin, Jeong-Hee
    Lee, Sun-Jung
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [9] Identities of symmetry for higher-order Euler polynomials in three variables (II)
    Kim, Dae San
    Lee, Nari
    Na, Jiyoung
    Park, Kyoung Ho
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (01) : 388 - 400
  • [10] IDENTITIES OF SYMMETRY FOR HIGHER-ORDER q-BERNOULLI POLYNOMIALS
    Kim, Dae San
    Kim, Taekyun
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (06) : 1077 - 1088