Unified moving-boundary model with fluctuations for unstable diffusive growth

被引:22
|
作者
Nicoli, Matteo [3 ]
Castro, Mario [1 ,2 ]
Cuerno, Rodolfo [3 ]
机构
[1] Univ Pontificia Comillas, Escuela Tecn Super Ingn ICAI, Grp Dinam No Lineal, E-28015 Madrid, Spain
[2] Univ Pontificia Comillas, Escuela Tecn Super Ingn ICAI, GISC, E-28015 Madrid, Spain
[3] Univ Carlos III Madrid, GISC, Dept Matemat, Leganes 28911, Spain
关键词
D O I
10.1103/PhysRevE.78.021601
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study a moving-boundary model of nonconserved interface growth that implements the interplay between diffusive matter transport and aggregation kinetics at the interface. Conspicuous examples are found in thin-film production by chemical vapor deposition and electrochemical deposition. The model also incorporates noise terms that account for fluctuations in the diffusive and attachment processes. A small-slope approximation allows us to derive effective interface evolution equations (IEEs) in which parameters are related to those of the full moving-boundary problem. In particular, the form of the linear dispersion relation of the IEE changes drastically for slow or for instantaneous attachment kinetics. In the former case the IEE takes the form of the well-known (noisy) Kuramoto-Sivashinsky equation, showing a morphological instability at short times that. evolves into kinetic roughening of the Kardar-Parisi-Zhang (KPZ) class. In the instantaneous kinetics limit, the IEE combines the Mullins-Sekerka linear dispersion relation with a KPZ nonlinearity, and we provide a numerical study of the ensuing dynamics. In all cases, the long preasymptotic transients can account for the experimental difficulties in observing KPZ scaling. We also compare our results with relevant data from experiments and discrete models.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A MOVING-BOUNDARY MODEL OF BIOMASS PYROLYSIS
    DESROSIERS, RE
    LIN, RJ
    [J]. SOLAR ENERGY, 1984, 33 (02) : 187 - 196
  • [2] Application of variational inequalities to the moving-boundary problem in a fluid model for biofilm growth
    Overgaard, Niels Chr.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (10) : 3658 - 3664
  • [3] MIPPS - A NUMERICAL MOVING-BOUNDARY MODEL FOR IMPULSE DRYING
    LINDSAY, JD
    SPRAGUE, CH
    [J]. JOURNAL OF PULP AND PAPER SCIENCE, 1989, 15 (04): : J137 - J141
  • [4] TURBULENCE OF FLUID IN A MOVING-BOUNDARY
    GOSSE, J
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 270 (22): : 1459 - &
  • [5] A SIMPLE MOVING-BOUNDARY APPARATUS
    BAXTER, EG
    GOLD, V
    [J]. NATURE, 1948, 161 (4089) : 403 - 403
  • [6] A one-dimensional moving-boundary model for tubulin-driven axonal growth
    Diehl, S.
    Henningsson, E.
    Heyden, A.
    Perna, S.
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2014, 358 : 194 - 207
  • [7] A SIMPLE MOVING-BOUNDARY APPARATUS
    DAVIES, RH
    [J]. NATURE, 1948, 161 (4104) : 1021 - 1021
  • [8] Moving-boundary Model of Cryogenic Operation for Fault Detection and Diagnostics
    Hafiychuk, Vasyl
    Foygel, Michael
    Watson, Michael D.
    Brown, Barbara
    Ponizovskaya-Devine, E.
    [J]. 2016 IEEE AEROSPACE CONFERENCE, 2016,
  • [9] The moving-boundary approach for modeling gravity-driven stable and unstable flow in soils
    Brindt, Naaran
    Wallach, Rony
    [J]. WATER RESOURCES RESEARCH, 2017, 53 (01) : 344 - 360
  • [10] A moving-boundary nodal model for the analysis of the stability of boiling channels
    Garea, VB
    Drew, DA
    Lahey, RT
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1999, 42 (19) : 3575 - 3584