Rotation and scale invariant texture classification by compensating for distribution changes using covariate shift in uniform local binary patterns

被引:2
|
作者
Hassan, A. [1 ]
Riaz, F. [1 ]
Rehman, S. [1 ]
机构
[1] NUST, Dept Comp Engn, Coll Elect & Mech Engn, Rawalpindi, Pakistan
关键词
feature extraction; image classification; image texture; support vector machines; novel rotation and scale invariant texture classification methodology; distribution matching; uniform local binary patterns; uLBP histograms; kernel methods; importance weights; standard support vector machines; Brodatz texture database; FEATURES;
D O I
10.1049/el.2013.2578
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel rotation and scale invariant texture classification methodology is proposed based on distribution matching in higher dimensional space. Feature extraction is performed by using uniform local binary patterns (uLBPs) in which the rotation and scale changes in an image cause shifts in the underlying uLBP histograms. To compensate for these shifts at the classification layer, the distributions of training and testing data using kernel methods are estimated and means of the two distributions in the transformed domain using importance weights are matched. These calculated importance weights are used in the standard support vector machines to compensate for the shift in the distributions. The proposed method is used for classifying the images in the Brodatz texture database demonstrating the effectiveness of the proposed methodology.
引用
收藏
页码:27 / 28
页数:2
相关论文
共 50 条
  • [1] Scale and Rotation Invariant Texture Classification Using Covariate Shift Methodology
    Hassan, Ali
    Riaz, Farhan
    Shaukat, Arslan
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (03) : 321 - 324
  • [2] Gray scale and rotation invariant texture classification with local binary patterns
    Ojala, T
    Pietikäinen, M
    Mäenpää, T
    [J]. COMPUTER VISION - ECCV 2000, PT I, PROCEEDINGS, 2000, 1842 : 404 - 420
  • [3] Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    Ojala, T
    Pietikäinen, M
    Mäenpää, T
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (07) : 971 - 987
  • [4] Reflection and Rotation Invariant Uniform Patterns for Texture Classification
    Liang, Chao
    Yang, Wenming
    Zhou, Fei
    Liao, Qingmin
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2016, E99D (05): : 1400 - 1403
  • [5] Multi-ring local binary patterns for rotation invariant texture classification
    He, Yonggang
    Sang, Nong
    [J]. NEURAL COMPUTING & APPLICATIONS, 2013, 22 (3-4): : 793 - 802
  • [6] Multi-ring local binary patterns for rotation invariant texture classification
    Yonggang He
    Nong Sang
    [J]. Neural Computing and Applications, 2013, 22 : 793 - 802
  • [7] TEXTURE CLASSIFICATION USING UNIFORM ROTATION INVARIANT GRADIENT
    Zhao, Wenteng
    Lu, Zongqing
    Liao, Qingmin
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3650 - 3654
  • [8] Completed Local Binary Count for Rotation Invariant Texture Classification
    Zhao, Yang
    Huang, De-Shuang
    Jia, Wei
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (10) : 4492 - 4497
  • [9] Local Binary Pattern approach for Rotation Invariant Texture Classification
    Bhandari, Smriti H.
    Yadrave, Amruta G.
    [J]. 2015 INTERNATIONAL CONFERENCED ON CIRCUITS, POWER AND COMPUTING TECHNOLOGIES (ICCPCT-2015), 2015,
  • [10] Local Binary Pattern Regrouping for Rotation Invariant Texture Classification
    Asma, Zitouni
    Brahim, Nini
    [J]. JOURNAL OF INFORMATION TECHNOLOGY RESEARCH, 2022, 15 (01)