Inductive database to support iterative data mining: Application to biomarker analysis on patient data in the Fight-HF project

被引:2
|
作者
Bresso, Emmanuel [1 ,2 ]
Ferreira, Joao-Pedro [2 ]
Girerd, Nicolas [2 ]
Kobayashi, Masatake [2 ]
Preud'homme, Gregoire [2 ]
Rossignol, Patrick [2 ]
Zannad, Fayez [2 ]
Devignes, Marie-Dominique [1 ]
Smail-Tabbone, Malika [1 ]
机构
[1] Univ Lorraine, CNRS, Inria Nancy GE, LORIA,UMR 7503, Vandoeuvre Les Nancy, France
[2] Univ Lorraine, Ctr Invest Clin Plurithemat 1433, INSERM 1116, CHRU Nancy, Nancy, France
关键词
Inductive database; Data mining; Heart Failure; Biomarkers; Knowledge Discovery from Data (KDD); RATIONALE; MODELS;
D O I
10.1016/j.jbi.2022.104212
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Machine learning is now an essential part of any biomedical study but its integration into real effective Learning Health Systems, including the whole process of Knowledge Discovery from Data (KDD), is not yet realised. We propose an original extension of the KDD process model that involves an inductive database. We designed for the first time a generic model of Inductive Clinical DataBase (ICDB) aimed at hosting both patient data and learned models. We report experiments conducted on patient data in the frame of a project dedicated to fight heart failure. The results show how the ICDB approach allows to identify biomarker combinations, specific and predictive of heart fibrosis phenotype, that put forward hypotheses relative to underlying mechanisms. Two main scenarios were considered, a local-to-global KDD scenario and a trans-cohort alignment scenario. This promising proof of concept enables us to draw the contours of a next-generation Knowledge Discovery Environment (KDE).
引用
收藏
页数:11
相关论文
共 6 条
  • [1] Inductive database to support iterative data mining: Application to biomarker analysis on patient data in the Fight-HF project
    Bresso, Emmanuel
    Ferreira, Joao-Pedro
    Girerd, Nicolas
    Kobayashi, Masatake
    Preud'homme, Grégoire
    Rossignol, Patrick
    Zannad, Fayez
    Devignes, Marie-Dominique
    Smaïl-Tabbone, Malika
    Journal of Biomedical Informatics, 2022, 135
  • [2] Sting_RDB: a relational database of structural parameters for protein analysis with support for data warehousing and data mining
    Oliveira, S. R. M.
    Almeida, G. V.
    Souza, K. R. R.
    Rodrigues, D. N.
    Kuser-Falcao, P. R.
    Yamagishi, M. E. B.
    Santos, E. H.
    Vieira, F. D.
    Jardine, J. G.
    Neshich, G.
    GENETICS AND MOLECULAR RESEARCH, 2007, 6 (04): : 911 - 922
  • [3] An Approach for Data Mining of Electronic Health Record Data for Suicide Risk Management: Database Analysis for Clinical Decision Support
    Berrouiguet, Sofian
    Billot, Romain
    Larsen, Mark Erik
    Lopez-Castroman, Jorge
    Jaussent, Isabelle
    Walter, Michel
    Lenca, Philippe
    Baca-Garcia, Enrique
    Courtet, Philippe
    JMIR MENTAL HEALTH, 2019, 6 (05):
  • [4] Data Mining in Personnel management. An Analysis of the Application potential for Decision support
    Ackermann, Karl-Friedrich
    ZEITSCHRIFT FUR PERSONALFORSCHUNG, 2011, 25 (01): : 84 - 87
  • [5] A data mining application: Analysis of problems occurring during a software project development process
    Nayak, R
    Qiu, T
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2005, 15 (04) : 647 - 663
  • [6] Health status predicts long-term outcomes in patients with chronic obstructive pulmonary disease (COPD): Pooled analysis of patient-level data from the COPD biomarker qualification consortium database
    Mullerova, Hana
    Gelhorn, Heather
    Wilson, Hilary
    Benson, Victoria
    Karlsson, Niklas
    Menjoge, Shailendra
    Merrill, Debora
    Rennard, Stephen
    Tal-Singer, Ruth
    Tabberer, Margaret
    Jones, Paul
    EUROPEAN RESPIRATORY JOURNAL, 2015, 46