fMRI Data Analysis with Dynamic Causal Modeling and Bayesian Networks

被引:2
|
作者
Mane, T. N. [1 ]
Nagori, M. B. [1 ]
Agrawal, S. A. [1 ]
机构
[1] Govt Engn Coll, Dept Comp Sci, Aurangabad, Maharashtra, India
关键词
fMRI; Functional Integration; Feature selection; Dynamic causal modeling; Markov Blanket;
D O I
10.4028/www.scientific.net/AMR.433-440.5303
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Brain, an amazing organ of human body comprises electrical signal that can be helpful for interaction between various brain regions. Functional Magnetic resonance Imaging (fMRI) is a specialized type of Magnetic Resonance Imaging scan. Though nature of fMRI data posses various challenges in the analysis. But, even after all challenges too, it is used as an effective method to diagnose various disease and the relationships between various brain regions. In this paper, we have proposed a model that will result a better fMRI data analysis. The effective interactions among the brain regions can be explored using dynamic causal modeling (DCM) that will help us to understand the functionality of brain up to some extent. Bayesian networks can be used for causal discovery purpose in support with markov blanket which can be evaluated with the help of evaluation metrics.
引用
收藏
页码:5303 / 5307
页数:5
相关论文
共 50 条
  • [1] DYNAMIC CAUSAL MODELING OF FMRI DATA
    Nagori, M. B.
    Gill, P. C.
    Joshi, M. S.
    [J]. PROCEEDINGS OF THE 2011 3RD INTERNATIONAL CONFERENCE ON SOFTWARE TECHNOLOGY AND ENGINEERING (ICSTE 2011), 2011, : 527 - 536
  • [2] A framework for group analysis of fMRI data using dynamic Bayesian networks
    Li, Junning
    Wang, Z. Jane
    McKeown, Martin J.
    [J]. 2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 5992 - +
  • [3] Physiologically informed dynamic causal modeling of fMRI data
    Havlicek, Martin
    Roebroeck, Alard
    Friston, Karl
    Gardumi, Anna
    Ivanov, Dimo
    Uludag, Kamil
    [J]. NEUROIMAGE, 2015, 122 : 355 - 372
  • [4] Missing data estimation in fMRI dynamic causal modeling
    Zaghlool, Shaza B.
    Wyatt, Christopher L.
    [J]. FRONTIERS IN NEUROSCIENCE, 2014, 8
  • [5] Assessing parameter identifiability for dynamic causal modeling of fMRI data
    Arand, Carolin
    Scheller, Elise
    Seeber, Benjamin
    Timmer, Jens
    Kloeppel, Stefan
    Schelter, Bjoern
    [J]. FRONTIERS IN NEUROSCIENCE, 2015, 9
  • [6] A Bayesian approach to modeling dynamic effective connectivity with fMRI data
    Bhattacharya, S
    Ho, MHR
    Purkayastha, S
    [J]. NEUROIMAGE, 2006, 30 (03) : 794 - 812
  • [7] Discrete Dynamic Bayesian Network Analysis of fMRI Data
    Burge, John
    Lane, Terran
    Link, Hamilton
    Qiu, Shibin
    Clark, Vincent P.
    [J]. HUMAN BRAIN MAPPING, 2009, 30 (01) : 122 - 137
  • [8] Dynamic Causal Modeling applied to fMRI data shows high reliability
    Schuyler, Brianna
    Ollinger, John M.
    Oakes, Terrence R.
    Johnstone, Tom
    Davidson, Richard J.
    [J]. NEUROIMAGE, 2010, 49 (01) : 603 - 611
  • [9] A strategy of model space search for dynamic causal modeling in task fMRI data exploratory analysis
    Ou, Yilin
    Dai, Peishan
    Zhou, Xiaoyan
    Xiong, Tong
    Li, Yang
    Chen, Zailiang
    Zou, Beiji
    [J]. PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2022, 45 (3) : 867 - 882
  • [10] A strategy of model space search for dynamic causal modeling in task fMRI data exploratory analysis
    Yilin Ou
    Peishan Dai
    Xiaoyan Zhou
    Tong Xiong
    Yang Li
    Zailiang Chen
    Beiji Zou
    [J]. Physical and Engineering Sciences in Medicine, 2022, 45 : 867 - 882