Comparative Genomics of DNA Recombination and Repair in Cyanobacteria:Biotechnological Implications

被引:56
|
作者
Cassier-Chauvat, Corinne [1 ]
Veaudor, Theo [1 ]
Chauvat, Franck [1 ]
机构
[1] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Integrat Biol Cell,CEA, Gif Sur Yvette, France
关键词
cyanobacteria; photoproduction; DNA recombination; DNA repair; genetic instability; insertion sequences; natural transformation; radiation resistance; CYANOBACTERIUM SYNECHOCOCCUS-ELONGATUS; ETHYLENE-FORMING ENZYME; PLANT-LIKE FERREDOXIN; SP STRAIN PCC-6803; BLUE-GREEN-ALGA; SYNECHOCYSTIS PCC6803; INSERTION SEQUENCES; SYNTHETIC BIOLOGY; MUTATIONAL ANALYSIS; HYDROGEN-PRODUCTION;
D O I
10.3389/fmicb.2016.01809
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Cyanobacteria are fascinating photosynthetic prokaryotes that are regarded as the ancestors of the plant chloroplast; the purveyors of oxygen and biomass for the food chain; and promising cell factories for an environmentally friendly production of chemicals. In colonizing most waters and soils of our planet, cyanobacteria are inevitably challenged by environmental stresses that generate DNA damages. Furthermore, many strains engineered for biotechnological purposes can use DNA recombination to stop synthesizing the biotechnological product. Hence, it is important to study DNA recombination and repair in cyanobacteria for both basic and applied research. This review reports what is known in a few widely studied model cyanobacteria and what can be inferred by mining the sequenced genomes of morphologically and physiologically diverse strains. We show that cyanobacteria possess many E. coli-like DNA recombination and repair genes, and possibly other genes not yet identified. E. coli-homolog genes are unevenly distributed in cyanobacteria, in agreement with their wide genome diversity. Many genes are extremely well conserved in cyanobacteria (mutMS, radA, recA, recFO, recG, recN, ruvABC, ssb, and uvrABCD), even in small genomes, suggesting that they encode the core DNA repair process. In addition to these core genes, the marine Prochlorococcus and Synechococcus strains harbor recBCD (DNA recombination), umuCD (mutational DNA replication), as well as the key SOS genes lexA (regulation of the SOS system) and sulA (postponing of cell division until completion of DNA reparation). Hence, these strains could possess an E. coli-type SOS system. In contrast, several cyanobacteria endowed with larger genomes lack typical SOS genes. For examples, the two studied Gloeobacter strains lack alkB, lexA, and sulA; and Synechococcus PCC7942 has neither lexA nor recCD. Furthermore, the Synechocystis PCC6803 lexA product does not regulate DNA repair genes. Collectively, these findings indicate that not all cyanobacteria have an E. coli-type SOS system. Also interestingly, several cyanobacteria possess multiple copies of E. coli-like DNA repair genes, such as Acaryochloris marina MBIC11017 (2 alkB, 3 ogt, 7 recA, 3 recD, 2 ssb, 3 umuC, 4 umuD, and 8 xerC), Cyanothece ATCC51142 (2 lexA and 4 ruvC), and Nostoc PCC7120 (2 ssb and 3 xerC).
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Genomics of Urea Transport and Catabolism in Cyanobacteria: Biotechnological Implications
    Veaudor, Theo
    Cassier-Chauvat, Corinne
    Chauvat, Franck
    [J]. FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [2] Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications
    Cassier-Chauvat, Corinne
    Blanc-Garin, Victoire
    Chauvat, Franck
    [J]. GENES, 2021, 12 (04)
  • [3] Comparative genomics of hemiascomycete yeasts: Genes involved in DNA replication, repair, and recombination
    Richard, GF
    Kerrest, A
    Lafontaine, I
    Dujon, B
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2005, 22 (04) : 1011 - 1023
  • [4] DNA repair and recombination in higher plants: insights from comparative genomics of arabidopsis and rice
    Singh, Sanjay K.
    Roy, Sujit
    Choudhury, Swarup Roy
    Sengupta, Dibyendu N.
    [J]. BMC GENOMICS, 2010, 11
  • [5] DNA repair and recombination in higher plants: insights from comparative genomics of arabidopsis and rice
    Sanjay K Singh
    Sujit Roy
    Swarup Roy Choudhury
    Dibyendu N Sengupta
    [J]. BMC Genomics, 11
  • [6] Comparative genomics of cyanobacteria and plants
    Sato, N
    [J]. PLANT AND CELL PHYSIOLOGY, 2003, 44 : S118 - S118
  • [7] Comparative genomics of NAD biosynthesis in cyanobacteria
    Gerdes, SY
    Kurnasov, OV
    Shatalin, K
    Polanuyer, B
    Sloutsky, R
    Vonstein, V
    Overbeek, R
    Osterman, AL
    [J]. JOURNAL OF BACTERIOLOGY, 2006, 188 (08) : 3012 - 3023
  • [8] Recent Advances in the Photoautotrophic Metabolism of Cyanobacteria: Biotechnological Implications
    Veaudor, Theo
    Blanc-Garin, Victoire
    Chenebault, Celia
    Diaz-Santos, Encarnacion
    Sassi, Jean-Francois
    Cassier-Chauvat, Corinne
    Chauvat, Franck
    [J]. LIFE-BASEL, 2020, 10 (05):
  • [9] A comparative analysis of the DNA recombination repair pathway in mycobacterial genomes
    Singh, Amandeep
    Bhagavat, Raghu
    Vijayan, M.
    Chandra, Nagasuma
    [J]. TUBERCULOSIS, 2016, 99 : 109 - 119
  • [10] DNA REPAIR AND RECOMBINATION
    HOWARDFL.P
    [J]. BRITISH MEDICAL BULLETIN, 1973, 29 (03) : 226 - 235