Class sizes of prime-power order p′-elements and normal subgroups

被引:0
|
作者
Beltran, Antonio [1 ]
Jose Felipe, Maria [2 ]
Shao, Changguo [3 ]
机构
[1] Univ Jaume 1, Dept Matemat, Castellon de La Plana 12071, Spain
[2] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Valencia 46022, Spain
[3] Univ Jinan, Sch Math Sci, Jinan 250022, Shandong, Peoples R China
关键词
Finite groups; Conjugacy class sizes; Normal subgroups; Prime-power order elements; p '-Elements; FINITE-GROUPS;
D O I
10.1007/s10231-014-0432-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an extension of the renowned Ito's theorem on groups having two class sizes in three different directions at the same time: normal subgroups, p'-elements and prime-power order elements. Let N be a normal subgroup of a finite group G and let p be a fixed prime. Suppose that vertical bar x(G)vertical bar = 1 or m for every q-element of N and for every prime q not equal p. Then, N has nilpotent p-complements.
引用
收藏
页码:1527 / 1533
页数:7
相关论文
共 50 条
  • [1] NORMAL SUBGROUPS AND CLASS SIZES OF ELEMENTS OF PRIME POWER ORDER
    Beltran, Antonio
    Jose Felipe, Maria
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (12) : 4105 - 4109
  • [2] Conjugacy Class Sizes of Elements of Prime-Power Order of Finite Groups
    Qingjun Kong
    [J]. Bulletin of the Iranian Mathematical Society, 2018, 44 : 405 - 408
  • [3] Conjugacy Class Sizes of Elements of Prime-Power Order of Finite Groups
    Kong, Qingjun
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (02): : 405 - 408
  • [4] On Conjugacy Class Sizes of the p′-Elements with Prime Power Order
    Zhao, Xianhe
    Guo, Xiuyun
    [J]. ALGEBRA COLLOQUIUM, 2009, 16 (04) : 541 - 548
  • [5] CLASS OF GROUPS OF PRIME-POWER ORDER
    WAMSLEY, JW
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1972, 11 (03) : 297 - &
  • [6] On G-Conjugacy Class Sizes of Prime Power Order Elements
    Zhao, Xianhe
    Chen, Guiyun
    Yang, Zhanying
    [J]. SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2013, 37 (04) : 635 - 640
  • [7] GROUPS OF PRIME-POWER ORDER
    NEWMAN, MF
    [J]. LECTURE NOTES IN MATHEMATICS, 1990, 1456 : 49 - 62
  • [8] On the Conjugacy Class Sizes of Prime Power Order pi r-Elements
    Zhao, X. H.
    Guo, X. Y.
    Shi, J. Y.
    [J]. SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2011, 35 (04) : 735 - 740
  • [9] On finite groups with prime-power order S-quasinormally embedded subgroups
    Xianbiao Wei
    Xiuyun Guo
    [J]. Monatshefte für Mathematik, 2011, 162 : 329 - 339
  • [10] On finite groups with prime-power order S-quasinormally embedded subgroups
    Wei, Xianbiao
    Guo, Xiuyun
    [J]. MONATSHEFTE FUR MATHEMATIK, 2011, 162 (03): : 329 - 339