Subchondral tibial bone texture analysis predicts knee osteoarthritis progression: data from the Osteoarthritis Initiative Tibial bone texture & knee OA progression

被引:43
|
作者
Janvier, T. [1 ]
Jennane, R. [1 ]
Valery, A. [2 ]
Harrar, K. [3 ]
Delplanque, M. [4 ]
Lelong, C. [5 ]
Loeuille, D. [6 ]
Toumi, H. [1 ,2 ]
Lespessailles, E. [1 ,2 ]
机构
[1] Univ Orleans, Lab I3MTO, EA 4708, F-45067 Orleans, France
[2] CHR Orleans, Serv Rhumatol, F-45032 Orleans, France
[3] Univ MHamed Bougara Boumerdes, Boumerdes 35000, Algeria
[4] EOS Imaging SA, F-75011 Paris, France
[5] Med Imaps SASU, F-337700 Merignac, France
[6] CHRU Nancy, UMR 7561, F-54511 Vandoeuvre Les Nancy, France
关键词
Fractal analysis; Trabecular bone texture; Knee osteoarthritis; Subchondral bone; Radiography; TRABECULAR BONE; FRACTAL SIGNATURE; MACRORADIOGRAPHS; RADIOGRAPHY; PARAMETER; SELECTION; SCORE; RISK;
D O I
10.1016/j.joca.2016.10.005
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Objectives: To examine whether trabecular bone texture (TBT) parameters assessed on computed radiographs could predict knee osteoarthritis (OA) progression. Methods: This study was performed using data from the Osteoarthritis Initiative (CAI). 1647 knees in 1124 patients had bilateral fixed flexion radiographs acquired 48 months apart. Images were semiautomatically segmented to extract a patchwork of regions of interest (ROI). A fractal texture analysis was performed using different methods. OA progression was defined as an increase in the joint space narrowing USN) over 48 months. The predictive ability of TBT was evaluated using logistic regression and receiver operating characteristic (ROC) curve. An optimization method for features selection was used to reduce the size of models and assess the impact of each ROI. Results: Fractal dimensions (FD's) were predictive of the JSN progression for each method tested with an area under the ROC curve (AUC) up to 0.71. Baseline JSN grade was not correlated with TBT parameters (R < 0.21) but had the same predictive capacity (AUC 0.71). The most predictive model included the clinical covariates (age, gender, body mass index (BMI)), JSN and TBT parameters (AUC 0.77). From a statistical point of view we found higher differences in TBT parameters computed in medial ROI between progressors and non-progressors. However, the integration of TBT results from the whole patchwork including the lateral ROIs in the model provided the best predictive model. Conclusions: Our findings indicate that TBT parameters assessed in different locations in the joint provided a good predictive ability to detect knee OA progression. (C) 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:259 / 266
页数:8
相关论文
共 50 条
  • [1] SUBCHONDRAL TIBIAL BONE TEXTURE ANALYSIS PREDICTS KNEE OSTEOARTHRITIS PROGRESSION: DATA FROM THE OSTEOARTHRITIS INITIATIVE
    Janvier, T.
    Toumi, H.
    Valery, A.
    Delsol, L.
    Jennane, R.
    Lespessailles, E.
    [J]. OSTEOPOROSIS INTERNATIONAL, 2015, 26 : S335 - S335
  • [2] SUBCHONDRAL TIBIAL BONE TEXTURE PREDICTS INCIDENT RADIOGRAPHIC KNEE OSTEOARTHRITIS: DATA FROM THE OSTEOARTHRITIS INITIATIVE
    Janvier, T.
    Lespessailles, E.
    Jennane, R.
    Toumi, H.
    [J]. OSTEOPOROSIS INTERNATIONAL, 2017, 28 : S185 - S185
  • [3] Subchondral tibial bone texture predicts the incidence of radiographic knee osteoarthritis: data from the Osteoarthritis Initiative
    Janvier, T.
    Jennane, R.
    Toumi, H.
    Lespessailles, E.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2017, 25 (12) : 2047 - 2054
  • [4] Subchondral tibial bone texture predicts the incidence of radiographic knee osteoarthritis: data from the osteoarthritis initiative: methodological issues
    Mansori, K.
    Sullman, M. J. M.
    Safiri, S.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2018, 26 (06) : E5 - E5
  • [5] Response to Letter to the Editor: 'Subchondral tibial bone texture predicts the incidence of radiographic knee osteoarthritis: data from the osteoarthritis initiative: methodological issues'
    Janvier, T.
    Jennane, R.
    Toumi, H.
    Lespessailles, E.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2018, 26 (06) : E6 - E7
  • [6] Prediction of progression of radiographic knee osteoarthritis using tibial trabecular bone texture
    Woloszynski, T.
    Podsiadlo, P.
    Stachowiak, G. W.
    Kurzynski, M.
    Lohmander, L. S.
    Englund, M.
    [J]. ARTHRITIS AND RHEUMATISM, 2012, 64 (03): : 688 - 695
  • [7] Short-term Variations in Subchondral Tibial Bone Texture of Conventional X-Rays Predicts Knee Osteoarthritis Progression
    Almhdie-Imjabbar, Ahmad
    Toumi, Hechmi
    Zerzouf, Zineb
    Lespessailles, Eric
    [J]. ARTHRITIS & RHEUMATOLOGY, 2022, 74 : 2454 - 2456
  • [8] Periarticular bone predicts knee osteoarthritis progression: Data from the Osteoarthritis Initiative
    Lo, Grace H.
    Schneider, Erika
    Driban, Jeffrey B.
    Price, Lori Lyn
    Hunter, David J.
    Eaton, Charles B.
    Hochberg, Marc C.
    Jackson, Rebecca D.
    Kwoh, C. Kent
    Nevitt, Michael C.
    Lynch, John A.
    McAlindon, Timothy E.
    [J]. SEMINARS IN ARTHRITIS AND RHEUMATISM, 2018, 48 (02) : 155 - 161
  • [9] Association of subchondral bone texture on magnetic resonance imaging with radiographic knee osteoarthritis progression: data from the Osteoarthritis Initiative Bone Ancillary Study
    James W. MacKay
    Geeta Kapoor
    Jeffrey B. Driban
    Grace H. Lo
    Timothy E. McAlindon
    Andoni P. Toms
    Andrew W. McCaskie
    Fiona J. Gilbert
    [J]. European Radiology, 2018, 28 : 4687 - 4695
  • [10] Association of subchondral bone texture on magnetic resonance imaging with radiographic knee osteoarthritis progression: data from the Osteoarthritis Initiative Bone Ancillary Study
    MacKay, James W.
    Kapoor, Geeta
    Driban, Jeffrey B.
    Lo, Grace H.
    McAlindon, Timothy E.
    Toms, Andoni P.
    McCaskie, Andrew W.
    Gilbert, Fiona J.
    [J]. EUROPEAN RADIOLOGY, 2018, 28 (11) : 4687 - 4695