Avoiding the Curse of Dimensionality in Local Binary Patterns

被引:0
|
作者
Petranek, Karel [1 ]
Vanek, Jan [1 ]
Milkova, Eva [1 ]
机构
[1] Univ Hradec Kralove, Rokitanskeho 62, Hradec Kralove 50002, Czech Republic
关键词
Dimensionality reduction; Local binary patterns; Image analysis; INVARIANT TEXTURE CLASSIFICATION; FEATURE DISTRIBUTIONS; GRAY-SCALE;
D O I
10.1007/978-3-319-45243-2_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Local Binary Patterns is a popular grayscale texture operator used in computer vision for classifying textures. The output of the operator is a bit string of a defined length, usually 8, 16 or 24 bits, describing local texture features. We focus on the problem of succinctly representing the patterns using alternative means and compressing them to reduce the number of dimensions. These reductions lead to simpler connections of Local Binary Patterns with machine learning algorithms such as neural networks or support vector machines, improve computation speed and simplify information retrieval from images. We study the distribution of Local Binary Patterns in 100000 natural images and show the advantages of our reduction technique by comparing it to existing algorithms developed by Ojala et al. We have also confirmed Ojala's findings about the uniform LBP proportions.
引用
收藏
页码:208 / 217
页数:10
相关论文
共 50 条
  • [1] Avoiding the curse of dimensionality in dynamic stochastic games
    Doraszelski, Ulrich
    Judd, Kenneth L.
    [J]. QUANTITATIVE ECONOMICS, 2012, 3 (01) : 53 - 93
  • [2] Class-specific classifier: Avoiding the curse of dimensionality
    Baggenstoss, PM
    [J]. IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2004, 19 (01) : 37 - 52
  • [3] Fighting the curse of dimensionality with local model networks
    Belz, Julian
    [J]. AT-AUTOMATISIERUNGSTECHNIK, 2019, 67 (10) : 889 - 890
  • [4] CAN LOCAL PARTICLE FILTERS BEAT THE CURSE OF DIMENSIONALITY?
    Rebeschini, Patrick
    van Handel, Ramon
    [J]. ANNALS OF APPLIED PROBABILITY, 2015, 25 (05): : 2809 - 2866
  • [5] Challenging the curse of dimensionality in multivariate local linear regression
    James Taylor
    Jochen Einbeck
    [J]. Computational Statistics, 2013, 28 : 955 - 976
  • [6] Challenging the curse of dimensionality in multivariate local linear regression
    Taylor, James
    Einbeck, Jochen
    [J]. COMPUTATIONAL STATISTICS, 2013, 28 (03) : 955 - 976
  • [7] The Curse of Dimensionality
    Patel, Niketu P.
    Sarraf, Elie
    Tsai, Mitchell H.
    [J]. ANESTHESIOLOGY, 2018, 129 (03) : 614 - 615
  • [8] AVOIDING SUFFICIENTLY LARGE BINARY PATTERNS
    Rampersad, Narad
    [J]. BULLETIN OF THE EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER SCIENCE, 2008, (95): : 241 - 245
  • [9] The curse(s) of dimensionality
    Naomi Altman
    Martin Krzywinski
    [J]. Nature Methods, 2018, 15 : 399 - 400
  • [10] Breaking the curse of dimensionality
    Weimar, Markus
    [J]. DISSERTATIONES MATHEMATICAE, 2015, (505) : 5 - 112