INVERSE BERNSTEIN INEQUALITIES AND MIN-MAX-MIN PROBLEMS ON THE UNIT CIRCLE

被引:5
|
作者
Erdelyi, Tamas [1 ]
Hardin, Douglas P. [2 ]
Saff, Edward B. [2 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Vanderbilt Univ, Dept Math, Ctr Construct Approximat, Nashville, TN 37240 USA
基金
美国国家科学基金会;
关键词
D O I
10.1112/S0025579314000138
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a short and elementary proof of an inverse Bernstein-type inequality found by S. Khrushohev for the derivative of a polynomial having all its zeros on the unit circle. The inequality is used to show that equally-spaced points solve a mm max-mm problem for the logarithmic potential of such polynomials. Using techniques recently developed for polarization (Chebyshev-type) problems, we show that this optimality also holds for a large class of potentials, including the Riesz potentials 1/r(s) with s > 0.
引用
收藏
页码:581 / 590
页数:10
相关论文
共 50 条
  • [1] A smoothing algorithm for finite min-max-min problems
    Tsoukalas, Angelos
    Parpas, Panos
    Rustem, Berc
    [J]. OPTIMIZATION LETTERS, 2009, 3 (01) : 49 - 62
  • [2] An aggregate deformation homotopy method for min-max-min problems with max-min constraints
    Hui-juan Xiong
    Bo Yu
    [J]. Computational Optimization and Applications, 2010, 47 : 501 - 527
  • [3] An aggregate deformation homotopy method for min-max-min problems with max-min constraints
    Xiong, Hui-juan
    Yu, Bo
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 47 (03) : 501 - 527
  • [4] Interval method for global solutions of a class of min-max-min problems
    Cao Dexin
    Chen Meirong
    Wang Haijun
    Ji Aanxiong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 196 (02) : 594 - 602
  • [5] Min-max-min robustness for combinatorial problems with discrete budgeted uncertainty
    Goerigk, Marc
    Kurtz, Jannis
    Poss, Michael
    [J]. DISCRETE APPLIED MATHEMATICS, 2020, 285 : 707 - 725
  • [6] Min-max-min robust combinatorial optimization
    Buchheim, Christoph
    Kurtz, Jannis
    [J]. MATHEMATICAL PROGRAMMING, 2017, 163 (1-2) : 1 - 23
  • [7] Faster algorithms for min-max-min robustness for combinatorial problems with budgeted uncertainty
    Chassein, Andre
    Goerigk, Marc
    Kurtz, Jannis
    Poss, Michael
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 279 (02) : 308 - 319
  • [8] Smoothing techniques for the solution of finite and semi-infinite min-max-min problems
    Polak, E
    [J]. HIGH PERFORMANCE ALGORITHMS AND SOFTWARE FOR NONLINEAR OPTIMIZATION, 2003, 82 : 343 - 362
  • [9] MIN-MAX-MIN OPTIMIZATION WITH SMOOTH AND STRONGLY CONVEX OBJECTIVES
    Lamperski, Jourdain
    Prokopyev, Oleg A.
    Wrabetz, Luca G.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2023, 33 (03) : 2435 - 2456
  • [10] Max–max, max–min, min–max and min–min knapsack problems with a parametric constraint
    Nir Halman
    Mikhail Y. Kovalyov
    Alain Quilliot
    [J]. 4OR, 2023, 21 : 235 - 246