Context-Aware Correlation Filter Tracking Based on Gaussian Output Constraint

被引:3
|
作者
Xu Jingxiang [1 ]
Wu Xuedong [1 ]
Yang Kaiyun [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Elect Informat, Zhenjiang 212000, Jiangsu, Peoples R China
关键词
machine vision; target tracking; target drift; context-aware; Gaussian output constrain;
D O I
10.3788/LOP57.041508
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Herein, a context-aware correlation filter tracking algorithm based on the Gaussian output constraint (OCCACF) is proposed to reduce the occurrence of drift in the target tracking process. This algorithm assumes that the output response of the tracking target obeys Gaussian distribution. A form of constraint output is derived from the properties of Gaussian distribution and an iterative parameter is obtained using the constraint output and correlation filter knowledge. The filters in this tracker are selectively updated according to setting constraints. The effectiveness of the proposed algorithm is verified using 50 video sequences in the OTB-2013 evaluation benchmark and the proposed algorithm is compared with other tracking algorithms. Experimental results show that the proposed algorithm can significantly improve the overall performance of target tracking and has obvious advantages than other algorithms that have been proposed in recent years.
引用
收藏
页数:7
相关论文
共 17 条
  • [1] Staple: Complementary Learners for Real-Time Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Golodetz, Stuart
    Miksik, Ondrej
    Torr, Philip H. S.
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1401 - 1409
  • [2] Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
  • [3] Speeded Up Low-Rank Online Metric Learning for Object Tracking
    Cong, Yang
    Fan, Baojie
    Liu, Ji
    Luo, Jiebo
    Yu, Haibin
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2015, 25 (06) : 922 - 934
  • [4] Danelljan M., 2014, P BRIT MACH VIS C SE
  • [5] Adaptive Color Attributes for Real-Time Visual Tracking
    Danelljan, Martin
    Khan, Fahad Shahbaz
    Felsberg, Michael
    van de Weijer, Joost
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1090 - 1097
  • [6] Struck: Structured Output Tracking with Kernels
    Hare, Sam
    Golodetz, Stuart
    Saffari, Amir
    Vineet, Vibhav
    Cheng, Ming-Ming
    Hicks, Stephen L.
    Torr, Philip H. S.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (10) : 2096 - 2109
  • [7] High-Speed Tracking with Kernelized Correlation Filters
    Henriques, Joao F.
    Caseiro, Rui
    Martins, Pedro
    Batista, Jorge
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (03) : 583 - 596
  • [8] Exploiting the Circulant Structure of Tracking-by-Detection with Kernels
    Henriques, Joao F.
    Caseiro, Rui
    Martins, Pedro
    Batista, Jorge
    [J]. COMPUTER VISION - ECCV 2012, PT IV, 2012, 7575 : 702 - 715
  • [9] Hou Zhi-Qiang, 2006, Acta Automatica Sinica, V32, P603
  • [10] Context-Aware Correlation Filter Tracking
    Mueller, Matthias
    Smith, Neil
    Ghanem, Bernard
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 1387 - 1395