A P300-based BCI Classification Algorithm using Median Filtering and Bayesian Feature Extraction

被引:0
|
作者
Li, Xiao-ou [1 ]
Wang, Feng [1 ]
Chen, Xun [2 ]
Ward, Rabab K. [2 ]
机构
[1] Shanghai Univ Sci & Technol, Sch Med Instrument & Food Engn, Shanghai Med Instrumentat Coll, 101 Yingkou, Shanghai 200093, Peoples R China
[2] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
关键词
BRAIN-COMPUTER INTERFACE; MENTAL PROSTHESIS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A brain computer interface (BCI) system translates a person's brain activity into useful control or communication signals. In this paper, an effective P300-based BCI identification algorithm using median filtering and Bayesian classifier is proposed to improve the classification accuracy and computation efficiency of P300-based BCI. Median filtering is firstly applied to remove noises and Bayesian Linear Discriminant Analysis (BLDA) is then employed for classification. Testing on the P300 speller paradigm in dataset II of 2004 BCI Competition III, we show that a 90% average classification accuracy can be achieved and the highest accuracy is 100%. The proposed method is also computationally efficient and thus it represents a practical implementation for man-computer communication control, especially for on-line applications.
引用
收藏
页码:305 / 308
页数:4
相关论文
共 50 条
  • [1] A comparison of feature extraction strategies using wavelet dictionaries and feature selection methods for single trial P300-based BCI
    R. Acevedo
    Y. Atum
    I. Gareis
    J. Biurrun Manresa
    V. Medina Bañuelos
    L. Rufiner
    [J]. Medical & Biological Engineering & Computing, 2019, 57 : 589 - 600
  • [2] Visual P300-based BCI to steer a Wheelchair: a Bayesian Approach
    Pires, Gabriel
    Castelo-Branco, Miguel
    Nunes, Urbano
    [J]. 2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, : 658 - +
  • [3] A comparison of feature extraction strategies using wavelet dictionaries and feature selection methods for single trial P300-based BCI
    Acevedo, R.
    Atum, Y.
    Gareis, I.
    Biurrun Manresa, J.
    Medina Banuelos, V.
    Rufiner, L.
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2019, 57 (03) : 589 - 600
  • [4] Data augmentation effects using borderline-SMOTE on classification of a P300-based BCI
    Lee, Taejun
    Kim, Minju
    Kim, Sung-Phil
    [J]. 2020 8TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2020, : 112 - 115
  • [5] A Novel Hybrid Swarm Algorithm for P300-Based BCI Channel Selection
    Martinez-Cagigal, Victor
    Santamaria-Vazquez, Eduardo
    Hornero, Roberto
    [J]. WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2018, VOL 3, 2019, 68 (03): : 41 - 45
  • [6] Proposal of a P300-based BCI Speller using a Predictive Text System
    Ron-Angevin, Ricardo
    da Silva-Sauer, Leandro
    [J]. NEUROTECHNIX: PROCEEDINGS OF THE INTERNATIONAL CONGRESS ON NEUROTECHNOLOGY, ELECTRONICS AND INFORMATICS, 2013, : 35 - 40
  • [7] A Bayesian Model for Exploiting Application Constraints to Enable Unsupervised Training of a P300-based BCI
    Kindermans, Pieter-Jan
    Verstraeten, David
    Schrauwen, Benjamin
    [J]. PLOS ONE, 2012, 7 (04):
  • [8] A tactile P300-based BCI for communication and detection of awareness
    Ortner, R.
    Prueckl, R.
    Guger, C.
    [J]. BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2013, 58
  • [9] A P300-based brain-computer interface (BCI)
    Donchin, E
    Spencer, K
    Wijesinghe, R
    [J]. PSYCHOPHYSIOLOGY, 1999, 36 : S15 - S16
  • [10] A tactile P300-based BCI for communication and detection of awareness
    Ortner, R.
    Prueckl, R.
    Guger, C.
    [J]. BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2013, 58