A dc non-thermal atmospheric-pressure plasma microjet

被引:28
|
作者
Zhu, WeiDong [1 ]
Lopez, Jose L. [2 ]
机构
[1] St Peters Coll, Dept Appl Sci & Technol, Jersey City, NJ USA
[2] Seton Hall Univ, Dept Phys, S Orange, NJ 07079 USA
来源
PLASMA SOURCES SCIENCE & TECHNOLOGY | 2012年 / 21卷 / 03期
关键词
AIR PLASMA; DISCHARGE; BACTERIA;
D O I
10.1088/0963-0252/21/3/034018
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A direct current (dc), non-thermal, atmospheric-pressure plasma microjet is generated with helium/oxygen gas mixture as working gas. The electrical property is characterized as a function of the oxygen concentration and show distinctive regions of operation. Side-on images of the jet were taken to analyze the mode of operation as well as the jet length. A self-pulsed mode is observed before the transition of the discharge to normal glow mode. Optical emission spectroscopy is employed from both end-on and side-on along the jet to analyze the reactive species generated in the plasma. Line emissions from atomic oxygen (at 777.4 nm) and helium (at 706.5 nm) were studied with respect to the oxygen volume percentage in the working gas, flow rate and discharge current. Optical emission intensities of Cu and OH are found to depend heavily on the oxygen concentration in the working gas. Ozone concentration measured in a semi-confined zone in front of the plasma jet is found to be from tens to similar to 120 ppm. The results presented here demonstrate potential pathways for the adjustment and tuning of various plasma parameters such as reactive species selectivity and quantities or even ultraviolet emission intensities manipulation in an atmospheric-pressure non-thermal plasma source. The possibilities of fine tuning these plasma species allows for enhanced applications in health and medical related areas.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Plant Disease Control by Non-Thermal Atmospheric-Pressure Plasma
    Adhikari, Bhawana
    Pangomm, Kamonporn
    Veerana, Mayura
    Mitra, Sarmistha
    Park, Gyungsoon
    [J]. FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [2] DC non-thermal atmospheric-pressure plasma jet generated using a syringe needle electrode
    Matra, Khanit
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (07)
  • [3] Properties of plasma sterilizer using non-thermal atmospheric-pressure biocompatible plasma
    Park, Jang Sick
    Han, Ihn
    Choi, Eun Ha
    [J]. AIP ADVANCES, 2019, 9 (07)
  • [4] Effects of atmospheric-pressure non-thermal plasma jets on enzyme solutions
    Pankaj Attri
    Pannuru Venkatesu
    Nagendra Kaushik
    Yong Gyu Han
    Chul Joo Nam
    Eun Ha Choi
    Key Sun Kim
    [J]. Journal of the Korean Physical Society, 2012, 60 : 959 - 964
  • [5] Atmospheric-Pressure Non-Thermal Plasma Jet for biomedical and industrial applications
    Asenjo, J.
    Mora, J.
    Vargas, A.
    Brenes, L.
    Montiel, R.
    Arrieta, J.
    Vargas, V. I.
    [J]. 15TH LATIN AMERICAN WORKSHOP ON PLASMA PHYSICS (LAWPP 2014) AND 21ST IAEA TM ON RESEARCH USING SMALL FUSION DEVICES (RUSFD), 2015, 591
  • [6] Differential sensitivity of lymphocyte subpopulations to non-thermal atmospheric-pressure plasma
    Haertel, Beate
    Volkmann, Frauke
    von Woedtke, Thomas
    Lindequist, Ulrike
    [J]. IMMUNOBIOLOGY, 2012, 217 (06) : 628 - 633
  • [7] Effects of Atmospheric-pressure Non-thermal Plasma Jets on Enzyme Solutions
    Attri, Pankaj
    Venkatesu, Pannuru
    Kaushik, Nagendra
    Han, Yong Gyu
    Nam, Chul Joo
    Choi, Eun Ha
    Kim, Key Sun
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2012, 60 (06) : 959 - 964
  • [8] Non-Thermal Atmospheric-Pressure Plasma Possible Application in Wound Healing
    Haertel, Beate
    von Woedtke, Thomas
    Weltmann, Klaus-Dieter
    Lindequist, Ulrike
    [J]. BIOMOLECULES & THERAPEUTICS, 2014, 22 (06) : 477 - 490
  • [9] Aluminum surface nitriding by an atmospheric-pressure non-thermal plasma technique
    Ma, Zhongyang
    Sun, Hongmei
    Zheng, Huan
    Zhao, Yanjun
    Sui, Siyuan
    Zhang, Chi
    Ni, Guohua
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2022, 61 (02)
  • [10] Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria
    Fridman, Gregory
    Brooks, Ari D.
    Balasubramanian, Manjula
    Fridman, Alexander
    Gutsol, Alexander
    Vasilets, Victor N.
    Ayan, Halim
    Friedman, Gary
    [J]. PLASMA PROCESSES AND POLYMERS, 2007, 4 (04) : 370 - 375