Covariant derivative on non-linear fiber bundles

被引:0
|
作者
Krtous, P [1 ]
机构
[1] Charles Univ, Inst Theoret Phys, Fac Math & Phys, Prague 18000 8, Czech Republic
关键词
differential geometry; gauge fields;
D O I
10.1023/B:CJOP.0000018126.28499.eb
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A gauge field is usually described as a connection on a principal bundle. It induces a covariant derivative on associated vector bundles, sections of which represent matter fields. In general, however, it is not possible to define a covariant derivative on non-linear fiber bundles, i.e. on those which axe not vector bundles. We define logarithmic covariant derivatives acting on two special non-linear fiber bundles - on the principal bundle and on the local gauge group bundle. The logarithmic derivatives map from sections of these bundles to the sections of the local gauge algebra bundle. Some properties of the logarithmic derivatives are formulated.
引用
收藏
页码:273 / 288
页数:16
相关论文
共 50 条
  • [1] COVARIANT DERIVATIVE EXPANSION FOR NON-LINEAR SIGMA-MODEL WITH 2 MULTIPLETS
    HOSOKAWA, M
    ISHIZUKA, W
    KIKUCHI, Y
    [J]. MODERN PHYSICS LETTERS A, 1989, 4 (21) : 2049 - 2054
  • [2] ON NON-LINEAR CELL BUNDLES
    HIRSCH, MW
    [J]. ANNALS OF MATHEMATICS, 1966, 84 (03) : 373 - &
  • [3] HOLOMORPHIC BUNDLES AND NON-LINEAR EQUATIONS
    KRICHEVER, IM
    NOVIKOV, SP
    [J]. PHYSICA D, 1981, 3 (1-2): : 267 - 293
  • [4] A covariant constitutive description of anisotropic non-linear elasticity
    J. Lu
    P. Papadopoulos
    [J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 2000, 51 : 204 - 217
  • [5] A covariant constitutive description of anisotropic non-linear elasticity
    Lu, J
    Papadopoulos, P
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2000, 51 (02): : 204 - 217
  • [6] Covariant formulation of the tensor algebra of non-linear elasticity
    Federico, Salvatore
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2012, 47 (02) : 273 - 284
  • [7] LINEAR AND NON-LINEAR OPTICAL FIBER DEVICES
    GOURE, JP
    VERRIER, I
    MEUNIER, JP
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1989, 22 (12) : 1791 - 1805
  • [8] CONFORMALLY COVARIANT NON-LINEAR EQUATIONS ON TENSOR-SPINORS
    BRANSON, TP
    KOSMANNSCHWARZBACH, Y
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1983, 7 (01) : 63 - 73
  • [9] Covariant decomposition of the non-linear galaxy number counts and their monopole
    Ginat, Yonadav Barry
    Desjacques, Vincent
    Jeong, Donghui
    Schmidt, Fabian
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (12):
  • [10] NON-LINEAR POINT TRANSFORMATIONS AND COVARIANT INTERPRETATION OF PATH INTEGRALS
    DEININGHAUS, U
    GRAHAM, R
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1979, 34 (02): : 211 - 219