NONHOMOGENEOUS DIRICHLET PROBLEMS WITHOUT THE AMBROSETTI-RABINOWITZ CONDITION

被引:11
|
作者
Li, Gang [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
Repovs, Dusan D. [4 ,5 ]
Zhang, Qihu [1 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Henan, Peoples R China
[2] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
[4] Univ Ljubljana, Fac Educ, Ljubljana 1000, Slovenia
[5] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
基金
中国国家自然科学基金;
关键词
Nonhomogeneous differential operator; Ambrosetti Rabinowitz condition; Cerami compactness condition; Sobolev space with variable exponent; VARIABLE EXPONENT; ELLIPTIC-EQUATIONS; P(X)-LAPLACIAN EQUATIONS; DIFFERENTIAL-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE; SPACES; REGULARITY; SYSTEMS; FUNCTIONALS;
D O I
10.12775/TMNA.2017.037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the existence of solutions of the following p(x)-Laplacian Dirichlet problem without the Ambrosetti-Rabinowitz condition: {-div(vertical bar del u vertical bar(p(x)-2)del u) = f (x, u) in Omega u = 0 on partial derivative Omega. We give a new growth condition and we point out its importance for checking the Cerami compactness condition. We prove the existence of solutions of the above problem via the critical point theory, and also provide some multiplicity properties. The present paper extend previous results of Q. Zhang and C. Zhao (Existence of strong solutions of a p(x)-Laplacian Dirichlet problem without the Ambrosetti Rabinowitz condition, Computers and Mathematics with Applications, 2015) and we establish the existence of solutions under weaker hypotheses on the nonlinear term.
引用
收藏
页码:55 / 77
页数:23
相关论文
共 50 条