Structure and representation of semimodules over inclines

被引:2
|
作者
Bai, Ruiqi [1 ]
Yang, Yichuan [1 ]
机构
[1] Beihang Univ, Sch Math Sci, Shahe Campus, Beijing 102206, Peoples R China
关键词
Idempotent semimodule; Ideal lattice; Congruence lattice; *-autonomous category; Algebraic - topological duality; Sheaf representation; MV-ALGEBRAS;
D O I
10.1016/j.apal.2020.102844
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An incline S is a commutative semiring where r + 1 = 1 for any r is an element of S. We note that the ideal lattice of an S-semimodule is naturally an S-semimodule and so is its congruence lattice when S is transitive. We prove that the categories of complete S-semimodules, together with dual functor, internal hom and tensor product, is a *-autonomous category. We define the locally and globally maximal congruences which are related to Birkhoff subdirect product decomposition. We show that the categories of S-semimodules, algebraic S-semimodules and topological S-semimodules are equivalent. Finally, we get a sheaf representation of any S-semimodule. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Representation of inclines
    Kim, KH
    Roush, FW
    Markowsky, G
    ALGEBRA COLLOQUIUM, 1997, 4 (04) : 461 - 470
  • [2] On Flat Semimodules over Semirings
    Yefim Katsov
    algebra universalis, 2004, 51 : 287 - 299
  • [3] Structure of Ordered Semimodules
    Suresh, K.
    Shobalatha, G.
    Devi, K. Mrudula
    INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (ICMSA-2019), 2020, 2246
  • [4] On flat semimodules over semirings
    Katsov, Y
    ALGEBRA UNIVERSALIS, 2004, 51 (2-3) : 287 - 299
  • [5] Partial Γ-Semimodules over Partial Γ-Semirings
    Mala, M. Siva
    Rao, P. V. Srinivasa
    Kumar, K. Kiran
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2024, 56 (1-2):
  • [6] Direct Sums of Injective Semimodules and Direct Products of Projective Semimodules Over Semirings
    Il'in, S. N.
    RUSSIAN MATHEMATICS, 2010, 54 (10) : 27 - 37
  • [7] SIMPLE SEMIMODULES OVER COMMUTATIVE SEMIRINGS
    JEZEK, J
    KEPKA, T
    ACTA SCIENTIARUM MATHEMATICARUM, 1983, 46 (1-4): : 17 - 27
  • [8] On injective envelopes of semimodules over semirings
    Il'in, S. N.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (07) : 1650122 - 1
  • [9] Bases in semimodules over commutative semirings
    Tan, Yi-Jia
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 443 : 139 - 152
  • [10] Strongly extending semimodules over a semiring
    Naeemah, Abbas Jabbar
    Al-Saadi, Saad. A.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2024, 27 (05): : 1677 - 1687