A Study on the Acoustic Energy Harvesting with Helmholtz Resonator and Piezoelectric Cantilevers

被引:41
|
作者
Noh, Seungjun [1 ]
Lee, Hoyoung [1 ]
Choi, Bumkyoo [1 ]
机构
[1] Sogang Univ, Dept Mech Engn, Seoul 121742, South Korea
关键词
Helmholtz resonator; Acoustic; Energy harvesting; Piezoelectric; Impedance matching; GENERATOR; FREQUENCY;
D O I
10.1007/s12541-013-0220-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Some kinds of thermofluid instruments are using Helmholtz resonators for absorbing noises radiated from them. Since the resonance frequency of a Helmholtz resonator depends on the ratio of the resonant volume to the neck size, operating frequency range can be easily tuned and thus the Helmholtz resonator is well-suited for noise control in a wide range of frequency. Besides the noise control application, Helmholtz resonators have been recently applied to acoustic energy harvesting. To date, most of studies on energy harvesting using Helmholtz resonators are employing piezoelectric materials located in the resonant volume and enhancing harvesting efficiency by tuning the resonance frequency and the structure of the added piezoelectric materials. In this study, a piezoelectric (PVDF composite) cantilever was integrated within a Helmholtz resonator Then, energy harvesting efficiency was maximized by matching and tuning mechanical resonance of the piezoelectric cantilever and acoustic resonance of the Helmholtz resonator Theoretical analysis including finite element simulation was also performed to confirm our experimental results. To maximize the harvest power, the electrical impedance matching was considered. This study can be applied to acoustic energy harvesting as well as acoustic noise control.
引用
下载
收藏
页码:1629 / 1635
页数:7
相关论文
共 50 条
  • [1] A study on the acoustic energy harvesting with Helmholtz resonator and piezoelectric cantilevers
    Seungjun Noh
    Hoyoung Lee
    Bumkyoo Choi
    International Journal of Precision Engineering and Manufacturing, 2013, 14 : 1629 - 1635
  • [2] Acoustic energy harvesting using an electromechanical Helmholtz resonator
    Liu, Fei
    Phipps, Alex
    Horowitz, Stephen
    Ngo, Khai
    Cattafesta, Louis
    Nishida, Toshikazu
    Sheplak, Mark
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2008, 123 (04): : 1983 - 1990
  • [3] Acoustic energy harvesting using an electromechanical Helmholtz resonator
    Liu, Fei
    Phipps, Alex
    Horowitz, Stephen
    Ngo, Khai
    Cattafesta, Louis
    Nishida, Toshikazu
    Sheplak, Mark
    Journal of the Acoustical Society of America, 2008, 123 (04): : 1983 - 1990
  • [4] An Improved Design of Helmholtz Resonator for Acoustic Energy Harvesting Devices
    Izhar
    Khan, Farid Ullah
    2016 INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS ENGINEERING (ICISE), 2016, : 283 - 288
  • [5] Harvesting energy from airflow with a michromachined piezoelectric harvester inside a Helmholtz resonator
    Matova, S. P.
    Elfrink, R.
    Vullers, R. J. M.
    van Schaijk, R.
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2011, 21 (10)
  • [6] Trampoline effect and Helmholtz coupled acoustic metamaterial piezoelectric energy harvesting
    Zhong, Jiahui
    Chai, Zhemin
    Zheng, Tong
    Li, Guizhong
    Xiang, Jiawei
    PHYSICS LETTERS A, 2024, 500
  • [7] Note: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams
    Yang, Aichao
    Li, Ping
    Wen, Yumei
    Lu, Caijiang
    Peng, Xiao
    He, Wei
    Zhang, Jitao
    Wang, Decai
    Yang, Feng
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (06):
  • [8] Conical Helmholtz Resonator-Based Triboelectric Nanogenerator for Harvesting of Acoustic energy
    Yu, Hongyong
    Du, Taili
    Zhao, Hongfa
    Zhang, Qiqi
    Liu, Ling
    Mtui, Anaeli Elibariki
    Huang, Yue
    Xiao, Xiu
    Xu, Minyi
    2021 IEEE 16TH INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (NEMS), 2021, : 1676 - 1679
  • [9] Metamaterial and Helmholtz coupled resonator for high-density acoustic energy harvesting
    Ma, Kejing
    Tan, Ting
    Yan, Zhimiao
    Liu, Fengrui
    Liao, Wei-Hsin
    Zhang, Wenming
    NANO ENERGY, 2021, 82
  • [10] Piezoelectric cantilevers energy harvesting in MEMS technique
    Shang Yingqi
    Qiu Chengjun
    Liu Hongmei
    Chen Xiaojie
    Qu Wei
    Dou Yanwei
    THIRD INTERNATIONAL CONFERENCE ON SMART MATERIALS AND NANOTECHNOLOGY IN ENGINEERING, 2012, 8409