HANDLING MISSING FEATURES IN MAXIMUM MARGIN BAYESIAN NETWORK CLASSIFIERS

被引:0
|
作者
Tschiatschek, Sebastian [1 ]
Mutsam, Nikolaus [1 ]
Pernkopf, Franz [1 ]
机构
[1] Graz Univ Technol, Signal Proc & Speech Commun Lab, A-8010 Graz, Austria
关键词
Discriminative Parameter Learning; Missing Data; Bayesian Network Classifiers; Maximum Margin Learning; CTBTO;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) records hydroacoustic data to detect nuclear explosions(1). This enables verification of the Comprehensive Nuclear-Test-Ban Treaty once it has entered into force. The detection can be considered as a classification problem discriminating noise-like, earthquake-caused and explosion-like data. Classification of the recorded data is challenging because it suffers from large amounts of missing features. While the classification performance of support vector machines has been evaluated, no such results for Bayesian network classifiers are available. We provide these results using classifiers with generatively and discriminatively optimized parameters and employing different imputation methods. In case of discriminatively optimized parameters, Bayesian network classifiers slightly outperform support vector machines. For optimizing the parameters discriminatively, we extend the formulation of maximum margin Bayesian network classifiers to missing features and latent variables. The advantage of these classifiers over classifiers with generatively optimized parameters is demonstrated in experiments.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Maximum Margin Bayesian Network Classifiers
    Pernkopf, Franz
    Wohlmayr, Michael
    Tschiatschek, Sebastian
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (03) : 521 - 532
  • [2] MAXIMUM MARGIN STRUCTURE LEARNING OF BAYESIAN NETWORK CLASSIFIERS
    Pernkopf, Franz
    Wohlmayr, Michael
    Muecke, Manfred
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2076 - 2079
  • [3] A new constrained maximum margin approach to discriminative learning of Bayesian classifiers
    Ke Guo
    Xia-bi Liu
    Lun-hao Guo
    Zong-jie Li
    Zeng-min Geng
    [J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19 : 639 - 650
  • [4] A new constrained maximum margin approach to discriminative learning of Bayesian classifiers
    Guo, Ke
    Liu, Xia-bi
    Guo, Lun-hao
    Li, Zong-jie
    Geng, Zeng-min
    [J]. FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2018, 19 (05) : 639 - 650
  • [5] Revising the structure of Bayesian network classifiers in the presence of missing data
    Sardinha, Roosevelt
    Paes, Aline
    Zaverucha, Gerson
    [J]. INFORMATION SCIENCES, 2018, 439 : 108 - 124
  • [6] Stochastic margin-based structure learning of Bayesian network classifiers
    Pernkopf, Franz
    Wohlmayr, Michael
    [J]. PATTERN RECOGNITION, 2013, 46 (02) : 464 - 471
  • [7] Bayesian network classifiers
    Friedman, N
    Geiger, D
    Goldszmidt, M
    [J]. MACHINE LEARNING, 1997, 29 (2-3) : 131 - 163
  • [8] Bayesian Network Classifiers
    Nir Friedman
    Dan Geiger
    Moises Goldszmidt
    [J]. Machine Learning, 1997, 29 : 131 - 163
  • [9] A method of handling missing data in the context of learning Bayesian network structure
    Chen, Chong
    Yu, Hua
    Wang, Juyun
    [J]. APPLIED SCIENCE AND PRECISION ENGINEERING INNOVATION, PTS 1 AND 2, 2014, 479-480 : 906 - +
  • [10] Handling missing continuous outcome data in a Bayesian network meta-analysis
    Azzolina, Danila
    Baldi, Ileana
    Minto, Clara
    Bottigliengo, Daniele
    Lorenzoni, Giulia
    Gregori, Dario
    [J]. EPIDEMIOLOGY BIOSTATISTICS AND PUBLIC HEALTH, 2018, 15 (04):