GPTIPS: An Open Source Genetic Programming Toolbox For Multigene Symbolic Regression

被引:0
|
作者
Searson, Dominic P. [1 ]
Leahy, David E. [1 ]
Willis, Mark J. [2 ]
机构
[1] Newcastle Univ, Northern Inst Canc Res, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Newcastle Univ, Sch Chem Engn & Adv Mat, Newcastle Upon Tyne, Tyne & Wear, England
关键词
genetic programming; symbolic regression; QSAR; toxicity; T; pyriformis; TETRAHYMENA; LIBRARY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this contribution GPTIPS, a free, open source MATLAB toolbox for performing symbolic regression by genetic programming (GP) is introduced. GPTIPS is specifically designed to evolve mathematical models of predictor response data that are "multigene" in nature, i.e. linear combinations of low order non-linear transformations of the input variables. The functionality of GPTIPS is demonstrated by using it to generate an accurate, compact QSAR (quantitative structure activity relationship) model of existing toxicity data in order to predict the toxicity of chemical compounds. It is shown that the low-order "multigene" GP methods implemented by GPTIPS can provide a useful alternative, as well as a complementary approach, to currently accepted empirical modelling and data analysis techniques. GPTIPS and documentation is available for download at http://sites.google.com/site/gptips4matlab/.
引用
收藏
页码:77 / +
页数:2
相关论文
共 50 条
  • [1] Compositional Genetic Programming for Symbolic Regression
    Krawiec, Krzysztof
    Kossinski, Dominik
    [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 570 - 573
  • [2] Sequential Symbolic Regression with Genetic Programming
    Oliveira, Luiz Otavio V. B.
    Otero, Fernando E. B.
    Pappa, Gisele L.
    Albinati, Julio
    [J]. GENETIC PROGRAMMING THEORY AND PRACTICE XII, 2015, : 73 - 90
  • [3] On improving genetic programming for symbolic regression
    Gustafson, S
    Burke, EK
    Krasnogor, N
    [J]. 2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 912 - 919
  • [4] Taylor Genetic Programming for Symbolic Regression
    He, Baihe
    Lu, Qiang
    Yang, Qingyun
    Luo, Jake
    Wang, Zhiguang
    [J]. PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 946 - 954
  • [5] Symbolic regression via genetic programming
    Augusto, DA
    Barbosa, HJC
    [J]. SIXTH BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, VOL 1, PROCEEDINGS, 2000, : 173 - 178
  • [6] Statistical genetic programming for symbolic regression
    Haeri, Maryam Amir
    Ebadzadeh, Mohammad Mehdi
    Folino, Gianluigi
    [J]. APPLIED SOFT COMPUTING, 2017, 60 : 447 - 469
  • [7] Evolutionary Design of a PSO-Tuned Multigene Symbolic Regression Genetic Programming Model for River Flow Forecasting
    Sheta, Alaa
    Abdel-Raouf, Amal
    Fraihat, Khalid M.
    Baareh, Abdelkarim
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (04) : 806 - 814
  • [8] Multifactorial Genetic Programming for Symbolic Regression Problems
    Zhong, Jinghui
    Feng, Liang
    Cai, Wentong
    Ong, Yew-Soon
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2020, 50 (11): : 4492 - 4505
  • [9] Genetic programming with separability detection for symbolic regression
    Wei-Li Liu
    Jiaquan Yang
    Jinghui Zhong
    Shibin Wang
    [J]. Complex & Intelligent Systems, 2021, 7 : 1185 - 1194
  • [10] Lifetime Adaptation in Genetic Programming for the Symbolic Regression
    Merta, Jan
    Brandejsky, Tomas
    [J]. COMPUTATIONAL STATISTICS AND MATHEMATICAL MODELING METHODS IN INTELLIGENT SYSTEMS, VOL. 2, 2019, 1047 : 339 - 346