Hyperspectral remote sensing of foliar nitrogen content

被引:355
|
作者
Knyazikhin, Yuri [1 ]
Schull, Mitchell A. [2 ]
Stenberg, Pauline [3 ]
Mottus, Matti [4 ]
Rautiainen, Miina [3 ]
Yang, Yan [1 ]
Marshak, Alexander [5 ]
Latorre Carmona, Pedro [6 ]
Kaufmann, Robert K. [1 ]
Lewis, Philip [7 ,8 ]
Disney, Mathias I. [7 ,8 ]
Vanderbilt, Vern [9 ]
Davis, Anthony B. [10 ]
Baret, Frederic [11 ]
Jacquemoud, Stephane [12 ]
Lyapustin, Alexei [5 ]
Myneni, Ranga B. [1 ]
机构
[1] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA
[2] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA
[3] Univ Helsinki, Dept Forest Sci, FI-00014 Helsinki, Finland
[4] Univ Helsinki, Dept Geosci & Geog, FI-00014 Helsinki, Finland
[5] NASA, Goddard Space Flight Ctr, Climate & Radiat Lab, Greenbelt, MD 20771 USA
[6] Univ Jaume 1, Dept Lenguajes & Sistemas Informat, Castellon de La Plana 12071, Spain
[7] UCL, Dept Geog, London WC1E 6BT, England
[8] UCL, Natl Ctr Earth Observat, London WC1E 6BT, England
[9] NASA, Ames Res Ctr, Div Earth Sci, Biospher Sci Branch, Moffett Field, CA 94035 USA
[10] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[11] INRA Site Agroparc, Unite Mixte Rech Environm Mediterraneen & Modelis, F-84914 Avignon, France
[12] Univ Paris Diderot, CNRS 7154, Inst Phys Globe Paris, UMR, F-75013 Paris, France
基金
美国国家航空航天局;
关键词
radiative effect; spurious regression; plant ecology; carbon cycle; PHOTON RECOLLISION PROBABILITY; CANOPY SPECTRAL INVARIANTS; LEAF OPTICAL-PROPERTIES; CLIMATE FEEDBACKS; FOREST ECOSYSTEMS; BOREAL FORESTS; REFLECTANCE; VEGETATION; TEMPERATE; MODEL;
D O I
10.1073/pnas.1210196109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A strong positive correlation between vegetation canopy bidirectional reflectance factor (BRF) in the near infrared (NIR) spectral region and foliar mass-based nitrogen concentration (%N) has been reported in some temperate and boreal forests. This relationship, if true, would indicate an additional role for nitrogen in the climate system via its influence on surface albedo and may offer a simple approach for monitoring foliar nitrogen using satellite data. We report, however, that the previously reported correlation is an artifact-it is a consequence of variations in canopy structure, rather than of %N. The data underlying this relationship were collected at sites with varying proportions of foliar nitrogen-poor needleleaf and nitrogen-rich broadleaf species, whose canopy structure differs considerably. When the BRF data are corrected for canopy-structure effects, the residual reflectance variations are negatively related to %N at all wavelengths in the interval 423-855 nm. This suggests that the observed positive correlation between BRF and %N conveys no information about %N. We find that to infer leaf biochemical constituents, e.g., N content, from remotely sensed data, BRF spectra in the interval 710-790 nm provide critical information for correction of structural influences. Our analysis also suggests that surface characteristics of leaves impact remote sensing of its internal constituents. This further decreases the ability to remotely sense canopy foliar nitrogen. Finally, the analysis presented here is generic to the problem of remote sensing of leaf-tissue constituents and is therefore not a specific critique of articles espousing remote sensing of foliar %N.
引用
收藏
页码:E185 / E192
页数:8
相关论文
共 50 条
  • [1] Estimating foliar nitrogen concentration with hyperspectral remote sensing image
    Zhang, X
    Zhang, B
    Liu, LY
    Wang, JH
    [J]. MULTISPECTRAL AND HYPERSPECTRAL REMOTE SENSING INSTRUMENTS AND APPLICATIONS, 2003, 4897 : 187 - 193
  • [2] Quantitative model of foliar dustfall content using hyperspectral remote sensing
    Peng Jie
    Xiang Hong-Ying
    Wang Jia-Qiang
    Ji Wen-Jun
    Liu Wei-Yang
    Chi Chun-Ming
    Zuo Tian-Guo
    [J]. JOURNAL OF INFRARED AND MILLIMETER WAVES, 2013, 32 (04) : 313 - +
  • [3] Influence of polarized reflection on airborne remote sensing of canopy foliar nitrogen content
    Liu, Siyuan
    Yang, Bin
    Zhang, Zihan
    Xiang, Yun
    Wu, Taixia
    Zhao, Yunsheng
    Zhang, Feizhou
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (13) : 4879 - 4900
  • [4] Using Hyperspectral Remote Sensing Data for Retrieving Canopy Chlorophyll and Nitrogen Content
    Clevers, Jan G. P. W.
    Kooistra, Lammert
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) : 574 - 583
  • [5] Winter Wheat Total Nitrogen Content Estimation Based on UAV Hyperspectral Remote Sensing
    Yang Xin
    Yuan Zi-ran
    Ye Yin
    Wang Dao-zhong
    Hua Ke-ke
    Guo Zhi-bin
    [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42 (10) : 3269 - 3274
  • [6] Quantitative mapping of soil nitrogen content using field spectrometer and hyperspectral remote sensing
    Wu, Jian
    Liu, Yaolin
    Chen, Dan
    Wang, Jing
    Chai, Xu
    [J]. 2009 INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND INFORMATION APPLICATION TECHNOLOGY, VOL II, PROCEEDINGS, 2009, : 379 - +
  • [7] SIMULATION OF SPACEBORNE HYPERSPECTRAL REMOTE SENSING TO ASSIST CROP NITROGEN CONTENT MONITORING IN AGRICULTURAL CROPS
    Berger, K.
    Wang, Z.
    Danner, M.
    Wocher, M.
    Mauser, W.
    Hank, T.
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3801 - 3804
  • [8] Estimation of Soil Arsenic Content with Hyperspectral Remote Sensing
    Wei, Lifei
    Pu, Haochen
    Wang, Zhengxiang
    Yuan, Ziran
    Yan, Xinru
    Cao, Liqin
    [J]. SENSORS, 2020, 20 (14) : 1 - 16
  • [9] Multivariate analysis of nitrogen content for rice at the heading stage using reflectance of airborne hyperspectral remote sensing
    Ryu, Chanseok
    Suguri, Masahiko
    Umeda, Mikio
    [J]. FIELD CROPS RESEARCH, 2011, 122 (03) : 214 - 224
  • [10] Progress in Inversion of Vegetation Nitrogen Concentration by Hyperspectral Remote Sensing
    Wang Li-wen
    Wei Ya-xing
    [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33 (10) : 2823 - 2827