Use of Monte Carlo Simulation in Remote Sensing Data Analysis

被引:0
|
作者
Ebrahimi, Hamideh [1 ]
Aslebagh, Shadi [1 ]
Jones, Linwood [1 ]
机构
[1] Univ Cent Florida, Dept EECS, Cent Florida Remote Sensing Lab, Orlando, FL 32816 USA
关键词
Monte Carlo simulation; Sea Surface Salinity; multilayer media effect; ocean brightness temperature;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the summer of 2011, the Aquarius earth science satellite was launched to measure Sea Surface Salinity (SSS) using a L-band microwave radiometer/scatterometer. This is an important oceanic parameter for monitoring the earth's water cycle over oceans and for modeling global climate change. The microwave remote sensing of SSS is a challenging objective. The SSS signal is weak and there are many interfering error sources that must be corrected to achieve an accurate SSS measurement. This paper deals with the use of random processes theory for assessing the effects of rainfall on the retrieved SSS. In this paper we use the Monte Carlo method that is one of the best methods for analysis of random processes, to investigate the multilayer effect caused by rainfall on the L-band brightness temperature and the resulting SSS retrieval.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Lidar Remote Sensing of Seawater Optical Properties: Experiment and Monte Carlo Simulation
    Liu, Dong
    Xu, Peituo
    Zhou, Yudi
    Chen, Weibiao
    Han, Bing
    Zhu, Xiaolei
    He, Yan
    Mao, Zhihua
    Le, Chengfeng
    Chen, Peng
    Che, Haochi
    Liu, Zhipeng
    Liu, Qun
    Song, Qingjun
    Chen, Sijie
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (11): : 9489 - 9498
  • [2] SATELLITE MICROWAVE REMOTE SENSING INSTRUMENT PERFORMANCE ESTIMATE USING MONTE CARLO SIMULATION
    Hassan, Alamgir
    Jacob, Maria
    Jones, W. Linwood
    [J]. IEEE SOUTHEASTCON 2018, 2018,
  • [3] APPLICATION OF MONTE CARLO METHOD TO REMOTE SENSING OF HUMIDITY
    薛永康
    黄润恒
    周秀骥
    [J]. Science China Chemistry, 1982, Ser.B.1982 (06) : 646 - 657
  • [4] REVERSE MONTE-CARLO SIMULATION FOR THE ANALYSIS OF EXAFS DATA
    GURMAN, SJ
    MCGREEVY, RL
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1990, 2 (48) : 9463 - 9473
  • [5] Use of Monte Carlo simulation for the interpretation and analysis of diffuse scattering
    Welberry, T. R.
    Chan, E. J.
    Goossens, D. J.
    Heerdegen, A. P.
    [J]. PHASE TRANSITIONS, 2010, 83 (02) : 80 - 98
  • [6] Analysis of the adjacency effect in satellite remote sensing by using backward Monte Carlo method
    Li, Hongshun
    Liu, Wei
    [J]. Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2004, 32 (11): : 1 - 3
  • [7] PROMSAR: A backward Monte Carlo spherical RTM for the analysis of DOAS remote sensing measurements
    Palazzi, E
    Petritoli, A
    Giovanelli, G
    Kostadinov, I
    Bortoli, D
    Ravegnani, F
    Sackey, SS
    [J]. ATMOSPHERIC REMOTE SENSING: EARTH'S SURFACE, TROPOSPHERE, STRATOSPHERE AND MESOSPHERE - I, 2005, 36 (05): : 1007 - 1014
  • [8] APPLICATION OF MONTE-CARLO METHOD TO REMOTE SENSING SYSTEMS
    ROTTGER, J
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE ELECTRONICS, 1971, GE 9 (03): : 191 - &
  • [9] Nonlinear mixture model of mixed pixels in remote sensing satellite images based on Monte Carlo simulation
    Arai, Kohei
    [J]. ADVANCES IN SPACE RESEARCH, 2008, 41 (11) : 1715 - 1723
  • [10] Topography-adjusted Monte Carlo simulation of the adjacency effect in remote sensing of coastal and inland waters
    Wu Y.
    Knudby A.
    Lapen D.
    [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2023, 303