Automatic detection and delineation of citrus trees from VHR satellite imagery

被引:29
|
作者
Ozdarici-Ok, A. [1 ]
机构
[1] Nevsehir HBV Univ, Dept Geodesy & Photogrammetry Engn, TR-50300 Nevsehir, Turkey
关键词
CROWN DETECTION; SEGMENTATION;
D O I
10.1080/01431161.2015.1079663
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this article, we present a novel approach to detecting and delineating individual citrus trees through very-high resolution (VHR) GeoEye-1 satellite images at two different test sites. The approach is based on vegetation extraction, fast radial symmetry (FRS) transform, and simple object-based hierarchical operations. Our basic assumption is that each citrus tree presents a symmetric feature in the image. Multiple parameter combinations were tested to determine the optimum parameter set. The results calculated with the combination of optimum parameters were then evaluated based on both pixel- and object-based approaches. Promising results (up to 90% accuracy) were obtained for both detection and delineation rates, especially in areas with regular planting patterns and minimum tree crown overlap. The results indicate that object-based evaluation improves the accuracy at certain detection and delineation rates.
引用
收藏
页码:4275 / 4296
页数:22
相关论文
共 50 条
  • [1] Automatic Shoreline Detection from Eight-Band VHR Satellite Imagery
    Alicandro, Maria
    Baiocchi, Valerio
    Brigante, Raffaella
    Radicioni, Fabio
    [J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2019, 7 (12)
  • [2] A Framework for Automatic Building Detection from Low-Contrast VHR Satellite Imagery
    Li, Junjun
    Cao, Jiannong
    [J]. ICVIP 2019: PROCEEDINGS OF 2019 3RD INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING, 2019, : 52 - 56
  • [3] Automatic tuning of segmentation parameters for tree crown delineation with VHR imagery
    Sothe, Camile
    de Almeida, Claudia Maria
    Schimalski, Marcos Benedito
    Liesenberg, Veraldo
    Diaz, Pedro Achanccaray
    [J]. GEOCARTO INTERNATIONAL, 2021, 36 (19) : 2241 - 2259
  • [4] Automatic Detection of Individual Trees from VHR Satellite Images Using Scale-Space Methods
    Mahour, Milad
    Tolpekin, Valentyn
    Stein, Alfred
    [J]. SENSORS, 2020, 20 (24) : 1 - 19
  • [5] Tree Crown Detection on Multispectral VHR Satellite Imagery
    Daliakopoulos, Ioannis N.
    Grillakis, Emmanouil G.
    Koutroulis, Aristeidis G.
    Tsanis, Ioannis K.
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2009, 75 (10): : 1201 - 1211
  • [6] VOLUMETRIC FOREST CHANGE DETECTION THROUGH VHR SATELLITE IMAGERY
    Akca, Devrim
    Stylianidis, Efstratios
    Smagas, Konstantinos
    Hofer, Martin
    Poli, Daniela
    Gruen, Armin
    Sanchez Martin, Victor
    Altan, Orhan
    Walli, Andreas
    Jimeno, Elisa
    Garcia, Alejandro
    [J]. XXIII ISPRS CONGRESS, COMMISSION VIII, 2016, 41 (B8): : 1213 - 1220
  • [7] Variable Shape Models For LS-based Automatic Building Extraction from VHR Satellite Imagery
    Wang, Weian
    Liu, Yi
    Lu, Jiao
    Zheng, Bo
    [J]. 2009 JOINT URBAN REMOTE SENSING EVENT, VOLS 1-3, 2009, : 1061 - 1064
  • [8] Automatic ship detection from commercial multispectral satellite imagery
    Daniel, Brian J.
    Schaum, Alan P.
    Allman, Eric C.
    Leathers, Robert A.
    Downes, Trijntje V.
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIX, 2013, 8743
  • [9] Semi-automatic road detection from satellite imagery
    Udomhunsakul, S
    [J]. ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 1723 - 1726
  • [10] AUTOMATIC RECTANGULAR BUILDING DETECTION FROM VHR AERIAL IMAGERY USING SHADOW AND IMAGE SEGMENTATION
    Ngo, Tran-Thanh
    Collet, Christophe
    Mazet, Vincent
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 1483 - 1487