Ensemble-based Multi-objective Clustering Algorithms for Gene Expression Data Sets

被引:0
|
作者
Li, Jianxia [1 ]
Liu, Ruochen [1 ]
Zhang, Mingyang [1 ]
Li, Yangyang [1 ]
机构
[1] Xidian Univ, Minist Educ, Key Lab Intelligent Percept & Image Understanding, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-objective clustering ensemble algorithms; gene expression data; MOLECULAR CLASSIFICATION; PREDICTION; CANCER; DISCOVERY; PATTERNS; SUBTYPES;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, two multi-objective clustering ensemble algorithms are proposed named MOCLED and MOCNCD. MOCLED is different from MOCLE on three points. First, different clustering algorithms are used to produce some new individuals in evolutionary process. Second, a new screening mechanism is added. In each generation, the worst individual is replaced by the best individual. Third, a new objective function is added to ensure a diverse population. MOCNCD is the same as MOCLED except the crossover operator. We replace it with a new proposed cluster ensemble algorithm, IDICLENS. Experimental results reveal the advantages of our method on finding good partitions.
引用
收藏
页码:333 / 340
页数:8
相关论文
共 50 条
  • [1] Multi-objective clustering ensemble for gene expression data analysis
    Faceli, Katti
    de Souto, Marcilio C. R.
    de Araujo, Daniel S. A.
    de Carvalho, Andre C. P. L. F.
    NEUROCOMPUTING, 2009, 72 (13-15) : 2763 - 2774
  • [2] Multi-Objective Gene Expression Programming for Clustering
    Zheng, Yifei
    Jia, Lixin
    Cao, Hui
    INFORMATION TECHNOLOGY AND CONTROL, 2012, 41 (03): : 283 - 294
  • [3] A multi-objective strategy in genetic algorithms for gene selection of gene expression data
    Mohamad M.S.
    Omatu S.
    Deris S.
    Misman M.F.
    Yoshioka M.
    Artificial Life and Robotics, 2009, 13 (02) : 410 - 413
  • [4] Impact of Base Partitions on Multi-objective and Traditional Ensemble Clustering Algorithms
    Piantoni, Jane
    Faceli, Katti
    Sakata, Tiemi C.
    Pereira, Julio C.
    de Souto, Marcilio C. P.
    NEURAL INFORMATION PROCESSING, PT I, 2015, 9489 : 696 - 704
  • [5] Utilizing rough sets and multi-objective genetic algorithms for automated clustering
    Özyer, T
    Alhajj, R
    Barker, K
    ROUGH SETS AND CURRENT TRENDS IN COMPUTING, 2004, 3066 : 567 - 572
  • [6] Ensemble-based hierarchical multi-objective production optimization of smart wells
    R. M. Fonseca
    O. Leeuwenburgh
    P. M. J. Van den Hof
    J. D. Jansen
    Computational Geosciences, 2014, 18 : 449 - 461
  • [7] Ensemble-based hierarchical multi-objective production optimization of smart wells
    Fonseca, R. M.
    Leeuwenburgh, O.
    Van den Hof, P. M. J.
    Jansen, J. D.
    COMPUTATIONAL GEOSCIENCES, 2014, 18 (3-4) : 449 - 461
  • [8] Multi-objective genetic algorithm based clustering approach and its application to gene expression data
    Özyer, T
    Liu, YM
    Alhajj, R
    Barker, K
    ADVANCES IN INFORMATION SYSTEMS, PROCEEDINGS, 2004, 3261 : 451 - 461
  • [9] Multi-objective optimization for clustering 3-way gene expression data
    Doulaye Dembélé
    Advances in Data Analysis and Classification, 2008, 2 : 211 - 225
  • [10] Multi-objective Optimization for Clustering Microarray Gene Expression Data - A Comparative Study
    Fuad, Muhammad Marwan Muhammad
    AGENT AND MULTI-AGENT SYSTEMS: TECHNOLOGIES AND APPLICATIONS, 2015, 38 : 123 - 133