Solar Flare Intensity Prediction With Machine Learning Models

被引:29
|
作者
Jiao, Zhenbang [1 ]
Sun, Hu [1 ]
Wang, Xiantong [2 ]
Manchester, Ward [2 ]
Gombosi, Tamas [2 ]
Hero, Alfred [1 ,3 ]
Chen, Yang [1 ,4 ]
机构
[1] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Michigan Inst Data Sci, Ann Arbor, MI 48109 USA
关键词
D O I
10.1029/2020SW002440
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We develop a mixed long short-term memory (LSTM) regression model to predict the maximum solar flare intensity within a 24-hr time window 0-24, 6-30, 12-36, and 24-48 hr ahead of time using 6, 12, 24, and 48 hr of data (predictors) for each Helioseismic and Magnetic Imager (HMI) Active Region Patch (HARP). The model makes use of (1) the Space-Weather HMI Active Region Patch (SHARP) parameters as predictors and (2) the exact flare intensities instead of class labels recorded in the Geostationary Operational Environmental Satellites (GOES) data set, which serves as the source of the response variables. Compared to solar flare classification, the model offers us more detailed information about the exact maximum flux level, that is, intensity, for each occurrence of a flare. We also consider classification models built on top of the regression model and obtain better results in solar flare classifications as compared to Chen et al. (2019, ). Our results suggest that the most efficient time period for predicting the solar activity is within 24 hr before the prediction time using the SHARP parameters and the LSTM model.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Comparative analysis of machine learning models for solar flare prediction
    Yanfang Zheng
    Weishu Qin
    Xuebao Li
    Yi Ling
    Xusheng Huang
    Xuefeng Li
    Pengchao Yan
    Shuainan Yan
    Hengrui Lou
    [J]. Astrophysics and Space Science, 2023, 368
  • [2] Comparative analysis of machine learning models for solar flare prediction
    Zheng, Yanfang
    Qin, Weishu
    Li, Xuebao
    Ling, Yi
    Huang, Xusheng
    Li, Xuefeng
    Yan, Pengchao
    Yan, Shuainan
    Lou, Hengrui
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2023, 368 (07)
  • [3] Editorial: Machine learning and statistical methods for solar flare prediction
    Chen, Yang
    Maloney, Shane
    Camporeale, Enrico
    Huang, Xin
    Zhou, Zhenjun
    [J]. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2023, 10
  • [4] DeepSun:machine-learning-as-a-service for solar flare prediction
    Yasser Abduallah
    Jason T.L.Wang
    Yang Nie
    Chang Liu
    Haimin Wang
    [J]. Research in Astronomy and Astrophysics, 2021, 21 (07) : 53 - 63
  • [5] DeepSun: machine-learning-as-a-service for solar flare prediction
    Abduallah, Yasser
    Wang, Jason T. L.
    Nie, Yang
    Liu, Chang
    Wang, Haimin
    [J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2021, 21 (07)
  • [6] A Hybrid Supervised/Unsupervised Machine Learning Approach to Solar Flare Prediction
    Benvenuto, Federico
    Piana, Michele
    Campi, Cristina
    Massone, Anna Maria
    [J]. ASTROPHYSICAL JOURNAL, 2018, 853 (01):
  • [7] Solar Flare Prediction Based on the Fusion of Multiple Deep-learning Models
    Tang, Rongxin
    Liao, Wenti
    Chen, Zhou
    Zeng, Xunwen
    Wang, Jing-song
    Luo, Bingxian
    Chen, Yanhong
    Cui, Yanmei
    Zhou, Meng
    Deng, Xiaohua
    Li, Haimeng
    Yuan, Kai
    Hong, Sheng
    Wu, Zhiping
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2021, 257 (02):
  • [8] Solar Flare Prediction Using Advanced Feature Extraction, Machine Learning, and Feature Selection
    Omar W. Ahmed
    Rami Qahwaji
    Tufan Colak
    Paul A. Higgins
    Peter T. Gallagher
    D. Shaun Bloomfield
    [J]. Solar Physics, 2013, 283 : 157 - 175
  • [9] Flare Index Prediction with Machine Learning Algorithms
    Chen, Anqin
    Ye, Qian
    Wang, Jingxiu
    [J]. SOLAR PHYSICS, 2021, 296 (10)
  • [10] Solar Flare Prediction Using Advanced Feature Extraction, Machine Learning, and Feature Selection
    Ahmed, Omar W.
    Qahwaji, Rami
    Colak, Tufan
    Higgins, Paul A.
    Gallagher, Peter T.
    Bloomfield, D. Shaun
    [J]. SOLAR PHYSICS, 2013, 283 (01) : 157 - 175