Online Building Thermal Parameter Estimation via Unscented Kalman Filtering

被引:0
|
作者
Radecki, Peter [1 ]
Hencey, Brandon [1 ]
机构
[1] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14850 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study demonstrates how an Unscented Kalman Filter augmented for parameter estimation can accurately learn and predict a building's thermal response. Recent studies of buildings' heating, ventilating, and air-conditioning systems have shown 25% to 30% energy conservation is possible with advanced occupant and weather responsive control systems. Hindering the widespread deployment of such prediction-based control systems is an inability to readily acquire accurate, robust models of individual buildings' unique thermal envelope. Low-cost generation of these thermal models requires deployment of online data-driven system identification and parameter estimation routines. We propose a novel gray-box approach using an Unscented Kalman Filter based on a multi-zone thermal network and validate it with EnergyPlus simulation data. The filter quickly learns parameters of a thermal network during periods of known or constrained loads and then characterizes unknown loads in order to provide accurate 48+ hour energy predictions. Besides enabling advanced controllers, the model and predictions could provide useful analysis, monitoring, and fault detection capabilities.
引用
收藏
页码:3056 / 3062
页数:7
相关论文
共 50 条
  • [1] Process monitoring and parameter estimation via unscented Kalman filtering
    Qu, Cheryl C.
    Hahn, Juergen
    [J]. JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2009, 22 (06) : 703 - 709
  • [2] Application of the Unscented Kalman Filtering to Parameter Estimation
    Attarian, Adam
    Batzel, Jerry J.
    Matzuka, Brett
    Hien Tran
    [J]. MATHEMATICAL MODELING AND VALIDATION IN PHYSIOLOGY: APPLICATIONS TO THE CARDIOVASCULAR AND RESPIRATORY SYSTEMS, 2013, 2064 : 75 - 88
  • [3] Unscented Kalman filtering for spacecraft attitude state and parameter estimation
    VanDyke, MC
    Schwartz, JL
    Hall, CD
    [J]. Spaceflight Mechanics 2004, Vol 119, Pt 1-3, 2005, 119 : 217 - 228
  • [4] NPSAT1 parameter estimation using unscented Kalman filtering
    Sekhavat, Pooya
    Gong, Qi
    Ross, I. Michael
    [J]. 2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 5365 - +
  • [5] Parameter estimation of resistor-capacitor models for building thermal dynamics using the unscented Kalman filter
    Chen, Yuxiang
    Castiglione, Juan
    Astroza, Rodrigo
    Li, Yong
    [J]. JOURNAL OF BUILDING ENGINEERING, 2021, 34
  • [6] Adaptive Unscented Kalman Filter for Online State, Parameter, and Process Covariance Estimation
    Riva, Mauro Hernan
    Dagen, Matthias
    Ortmaier, Tobias
    [J]. 2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 4513 - 4519
  • [7] Unscented kalman filtering for SINS attitude estimation
    Zhao, Lin
    Nie, Qi
    Guo, Qiufen
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-7, 2007, : 2720 - 2724
  • [8] Computation of arrival cost for moving horizon estimation via unscented Kalman filtering
    Qu, Cheryl C.
    Hahn, Juergen
    [J]. JOURNAL OF PROCESS CONTROL, 2009, 19 (02) : 358 - 363
  • [9] PPG-based Windkessel model parameter identification via unscented Kalman filtering
    Walia, Akhil
    Kaul, Amit
    [J]. INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2023, 42 (02) : 184 - 204
  • [10] Recursive parameter estimation of thermostatically controlled loads via unscented Kalman filter
    Burger, Eric M.
    Moura, Scott J.
    [J]. SUSTAINABLE ENERGY GRIDS & NETWORKS, 2016, 8 : 12 - 25