A Machine Learning Approach for Grading Autism Severity Levels Using Task-based Functional MRI

被引:1
|
作者
Haweel, Reem [1 ,2 ]
Dekhil, Omar [1 ]
Shalaby, Ahmed [1 ]
Mahmoud, Ali [1 ]
Ghazal, Mohammed [1 ,3 ]
Keynton, Robert [1 ]
Barnes, Gregory [4 ]
El-Baz, Ayman [1 ]
机构
[1] Univ Louisville, Dept Bioengn, Louisville, KY 40292 USA
[2] Univ Ain Shams, Fac Comp & Informat Sci, Cairo, Egypt
[3] Abu Dhabi Univ, Dept Elect & Comp Engn, Abu Dhabi, U Arab Emirates
[4] Univ Louisville, Dept Neurol, Louisville, KY 40292 USA
关键词
Autism; Task-based functional MRI; Random Forest;
D O I
10.1109/ist48021.2019.9010335
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Autism is a developmental disorder associated with difficulties in communication and social interaction. Autism diagnostic observation schedule (ADOS) is considered the gold standard in autism diagnosis, which estimates a score explaining the severity level for each individual. Currently, brain image modalities are being investigated for the development of objective technologies to diagnose Autism spectrum disorder (ASD). Alterations in functional activity is believed to be important in explaining autism causative factors. This paper presents a machine learning approach for grading severity level of the autistic subjects using task-based functional MRI data. The local features related to the functional activity of the brain is obtained from a speech experiment. According to ADOS reports, the adopted dataset is classified to three groups: mild, moderate and severe. Our analysis is divided into two parts: (i) individual subject analysis and (ii) higher level group analysis. We use the individual analysis to extract the features used in classification, while the higher level analysis is used to infer the statistical differences between groups. The obtained classification accuracy is 78% using the random forest classifier.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] A Novel Grading System for Autism Severity Level Using Task-Based Functional MRI: A Response to Speech Study
    Haweel, Reem
    Shalaby, Ahmed M.
    Mahmoud, Ali H.
    Ghazal, Mohammed
    Seada, Noha
    Ghoniemy, Said
    Casanova, Manuel
    Barnes, Gregory N.
    El-Baz, Ayman
    [J]. IEEE ACCESS, 2021, 9 : 100570 - 100582
  • [2] A NOVEL FRAMEWORK FOR GRADING AUTISM SEVERITY USING TASK-BASED FMRI
    Haweel, Reem
    Dekhil, Omar
    Shalaby, Ahmed
    Mahmoud, Ali
    Ghazal, Mohammed
    Khalil, Ashraf
    Keynton, Robert
    Barnes, Gregory
    El-Baz, Ayman
    [J]. 2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 1404 - 1407
  • [3] An Approach for Severity Prediction of Autism Using Machine Learning
    Che, Min
    Wang, Liya
    Huang, Lin
    Jiang, Zhibin
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2019, : 701 - 705
  • [4] Decoding Working Memory Load Using Machine Learning and Task-Based Functional Connectivity
    Eryilmaz, Hamdi
    Dowling, Kevin
    Hughes, Dylan
    Rodriguez-Thompson, Anais
    Huntington, Franklin
    Coon, William
    Roffman, Joshua
    [J]. NEUROPSYCHOPHARMACOLOGY, 2019, 44 (SUPPL 1) : 262 - 263
  • [5] Task-based and Resting State Functional MRI in Children
    Maheshwari, Mohit
    Deshmukh, Tejaswini
    Leuthardt, Eric C.
    Shimony, Joshua S.
    [J]. MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2021, 29 (04) : 527 - 541
  • [6] Analysis of task-based functional MRI data preprocessed with fMRIPrep
    Oscar Esteban
    Rastko Ciric
    Karolina Finc
    Ross W. Blair
    Christopher J. Markiewicz
    Craig A. Moodie
    James D. Kent
    Mathias Goncalves
    Elizabeth DuPre
    Daniel E. P. Gomez
    Zhifang Ye
    Taylor Salo
    Romain Valabregue
    Inge K. Amlien
    Franziskus Liem
    Nir Jacoby
    Hrvoje Stojić
    Matthew Cieslak
    Sebastian Urchs
    Yaroslav O. Halchenko
    Satrajit S. Ghosh
    Alejandro De La Vega
    Tal Yarkoni
    Jessey Wright
    William H. Thompson
    Russell A. Poldrack
    Krzysztof J. Gorgolewski
    [J]. Nature Protocols, 2020, 15 : 2186 - 2202
  • [7] Analysis of task-based functional MRI data preprocessed with fMRIPrep
    Esteban, Oscar
    Ciric, Rastko
    Finc, Karolina
    Blair, Ross
    Markiewicz, Christopher J.
    Moodie, Craig A.
    Kent, James D.
    Goncalves, Mathias
    DuPre, Elizabeth
    Gomez, Daniel E. P.
    Ye, Zhifang
    Salo, Taylor
    Valabregue, Romain
    Amlien, Inge K.
    Liem, Franziskus
    Jacoby, Nir
    Stojic, Hrvoje
    Cieslak, Matthew
    Urchs, Sebastian
    Halchenko, Yaroslav O.
    Ghosh, Satrajit S.
    De La Vega, Alejandro
    Yarkoni, Tal
    Wright, Jessey
    Thompson, William H.
    Poldrack, Russell A.
    Gorgolewski, Krzysztof J.
    [J]. NATURE PROTOCOLS, 2020, 15 (07) : 2186 - 2202
  • [8] Building a Corpus of Task-Based Grading and Feedback Systems for Learning and Teaching Programming
    Strickroth, Sven
    Striewe, Michael
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING PEDAGOGY, 2022, 12 (05): : 26 - 41
  • [9] Severity Grading of Diabetic Retinopathy Using Extreme Learning Machine
    Punithavathi, I. S. Hephzi
    Kumar, P. Ganesh
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT TECHNIQUES IN CONTROL, OPTIMIZATION AND SIGNAL PROCESSING (INCOS), 2017,
  • [10] Assessing sensorimotor control of the lumbopelvic-hip region using task-based functional MRI
    Silfies, Sheri P.
    Beattie, Paul
    Jordon, Max
    Vendemia, Jennifer M. C.
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2020, 124 (01) : 192 - 206