Bose-Fermi duality and entanglement entropies

被引:31
|
作者
Headrick, Matthew [1 ,2 ]
Lawrence, Albion [1 ]
Roberts, Matthew [3 ,4 ]
机构
[1] Brandeis Univ, Martin Fisher Sch Phys, Waltham, MA 02254 USA
[2] Harvard Univ, Ctr Fundamental Laws Nat, Cambridge, MA 02138 USA
[3] NYU, Dept Phys, New York, NY 10003 USA
[4] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA
基金
美国国家科学基金会;
关键词
bosonization; conformal field theory (theory); entanglement in extended quantum systems (theory); FIELD; BOSONIZATION;
D O I
10.1088/1742-5468/2013/02/P02022
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Entanglement (Renyi) entropies of spatial regions are a useful tool for characterizing the ground states of quantum field theories. In this paper we investigate the extent to which these are universal quantities for a given theory, and to which they distinguish different theories, by comparing the entanglement spectra of the massless Dirac fermion and the compact free boson in two dimensions. We show that the calculation of Renyi entropies via the replica trick for any orbifold theory includes a sum over orbifold twists on all cycles. In a modular-invariant theory of fermions, this amounts to a sum over spin structures. The result is that the Renyi entropies respect the standard Bose-Fermi duality. Next, we investigate the entanglement spectrum for the Dirac fermion without a sum over spin structures, and for the compact boson at the self-dual radius. These are not equivalent theories; nonetheless, we find that (1) their second Renyi entropies agree for any number of intervals, (2) their full entanglement spectra agree for two intervals, and (3) the spectrum generically disagrees otherwise. These results follow from the equality of the partition functions of the two theories on any Riemann surface with imaginary period matrix. We also exhibit a map between the operators of the theories that preserves scaling dimensions (but not spins), as well as OPEs and correlators of operators placed on the real line. All of these coincidences can be traced to the fact that the momentum lattice for the bosonized fermion is related to that of the self-dual boson by a 45 rotation that mixes left- and right-movers.
引用
下载
收藏
页数:39
相关论文
共 50 条
  • [1] Relaxation in Luttinger liquids: Bose-Fermi duality
    Protopopov, I. V.
    Gutman, D. B.
    Mirlin, A. D.
    PHYSICAL REVIEW B, 2014, 90 (12)
  • [2] Bose-Fermi degeneracy and duality in non-supersymmetric strings
    Shiu, G
    Tye, SHH
    NUCLEAR PHYSICS B, 1999, 542 (1-2) : 45 - 72
  • [3] Anyons and the Bose-Fermi duality in the finite-temperature thirring model
    Ilieva, N
    Thirring, W
    THEORETICAL AND MATHEMATICAL PHYSICS, 1999, 121 (01) : 1294 - 1314
  • [4] Bose-Fermi pair correlations in attractively interacting Bose-Fermi atomic mixtures
    Watanabe, Takayuki
    Suzuki, Toru
    Schuck, Peter
    PHYSICAL REVIEW A, 2008, 78 (03):
  • [5] Anyons and the Bose-Fermi duality in the finite-temperature thirring model
    N. Ilieva
    W. Thirring
    Theoretical and Mathematical Physics, 1999, 121 : 1294 - 1314
  • [6] Disordered One-Dimensional Bose-Fermi Mixtures: The Bose-Fermi Glass
    Crepin, Francois
    Zarand, Gergely
    Simon, Pascal
    PHYSICAL REVIEW LETTERS, 2010, 105 (11)
  • [7] Bose-Fermi duality in a quantum Otto heat engine with trapped repulsive bosons
    Chen, Jinfu
    Dong, Hui
    Sun, Chang-Pu
    PHYSICAL REVIEW E, 2018, 98 (06)
  • [8] Drag in Bose-Fermi mixtures
    Jee, Kai Yen
    Mueller, Erich
    PHYSICAL REVIEW A, 2021, 103 (03)
  • [9] Lasing in Bose-Fermi mixtures
    Kochereshko, Vladimir P.
    Durnev, Mikhail V.
    Besombes, Lucien
    Mariette, Henri
    Sapega, Victor F.
    Askitopoulos, Alexis
    Savenko, Ivan G.
    Liew, Timothy C. H.
    Shelykh, Ivan A.
    Platonov, Alexey V.
    Tsintzos, Simeon I.
    Hatzopoulos, Z.
    Savvidis, Pavlos G.
    Kalevich, Vladimir K.
    Afanasiev, Mikhail M.
    Lukoshkin, Vladimir A.
    Schneider, Christian
    Amthor, Matthias
    Metzger, Christian
    Kamp, Martin
    Hoefling, Sven
    Lagoudakis, Pavlos
    Kavokin, Alexey
    SCIENTIFIC REPORTS, 2016, 6
  • [10] Lasing in Bose-Fermi mixtures
    Vladimir P. Kochereshko
    Mikhail V. Durnev
    Lucien Besombes
    Henri Mariette
    Victor F. Sapega
    Alexis Askitopoulos
    Ivan G. Savenko
    Timothy C. H. Liew
    Ivan A. Shelykh
    Alexey V. Platonov
    Simeon I. Tsintzos
    Z. Hatzopoulos
    Pavlos G. Savvidis
    Vladimir K. Kalevich
    Mikhail M. Afanasiev
    Vladimir A. Lukoshkin
    Christian Schneider
    Matthias Amthor
    Christian Metzger
    Martin Kamp
    Sven Hoefling
    Pavlos Lagoudakis
    Alexey Kavokin
    Scientific Reports, 6